فایل ورد کامل تحقیق معادلات تعادل در محیط‏های‏ ایزوتروپ جانبی لایه ای و ماتریس سختی شالوده صلب مستطیلی با استفاده از توابع گرین ۵۸ صفحه در word


در حال بارگذاری
10 جولای 2025
پاورپوینت
17870
6 بازدید
۷۹,۷۰۰ تومان
خرید

توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد

 فایل ورد کامل تحقیق معادلات تعادل در محیط‏های‏ ایزوتروپ جانبی لایه ای و ماتریس سختی شالوده صلب مستطیلی با استفاده از توابع گرین ۵۸ صفحه در word دارای ۵۸ صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است

لطفا نگران مطالب داخل فایل نباشید، مطالب داخل صفحات بسیار عالی و قابل درک برای شما می باشد، ما عالی بودن این فایل رو تضمین می کنیم.

فایل ورد فایل ورد کامل تحقیق معادلات تعادل در محیط‏های‏ ایزوتروپ جانبی لایه ای و ماتریس سختی شالوده صلب مستطیلی با استفاده از توابع گرین ۵۸ صفحه در word  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

توجه : در صورت  مشاهده  بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل ورد می باشد و در فایل اصلی فایل ورد کامل تحقیق معادلات تعادل در محیط‏های‏ ایزوتروپ جانبی لایه ای و ماتریس سختی شالوده صلب مستطیلی با استفاده از توابع گرین ۵۸ صفحه در word،به هیچ وجه بهم ریختگی وجود ندارد


بخشی از متن فایل ورد کامل تحقیق معادلات تعادل در محیط‏های‏ ایزوتروپ جانبی لایه ای و ماتریس سختی شالوده صلب مستطیلی با استفاده از توابع گرین ۵۸ صفحه در word :

بخشی از فهرست مطالب فایل ورد کامل تحقیق معادلات تعادل در محیط‏های‏ ایزوتروپ جانبی لایه ای و ماتریس سختی شالوده صلب مستطیلی با استفاده از توابع گرین ۵۸ صفحه در word

مقدمه    
فصل اول:معادلات تعادل در محیط‏های‏ ایزوتروپ جانبی لایه ای    
۱-۱- مقدمه    
۱-۲- بیان مساله و معادلات حاکم    
۱-۳- توابع پتانسیل    
۱-۴ – شرایط مرزی :    
فصل دوم:توابع گرین در حالت کلی    
۲-۱- مقدمه    
۲-۲- حالت      
۲-۳- تبدیل دستگاه مختصات قطبی به دستگاه مختصات دکارتی و انتقال محورها:    
فصل سوم:ماتریس سختی شالوده صلب مستطیلی با استفاده از توابع گرین    
۳-۱- مقدمه    
۳-۲-۱- توابع شکل مورد استفاده    
۳-۲-۱-۱- توابع شکل المان‏های‏ لبه ای‏ ۸ گره ای‏     
۳-۲-۱-۲- توابع شکل المان‏های‏ میانی ۸ گره ای     
۳-۲-۱-۳- توابع شکل المان‏های‏ گوشه ۸ گره ای     
۳-۲-۱-۴- فلوچارت برنامه نویسی برای تحلیل مساله    
فهرست مراجع    

بخشی از منابع و مراجع فایل ورد کامل تحقیق معادلات تعادل در محیط‏های‏ ایزوتروپ جانبی لایه ای و ماتریس سختی شالوده صلب مستطیلی با استفاده از توابع گرین ۵۸ صفحه در word

۲۰- Nowacki, W. (1954)., The stress function in three dimensionals problems concerning an elastic body characterized by transversely isotropy,. Bull. Acad. Polon. Sci. Vol. 2, pp 21-

۲۱-Pak, R.Y.S. (1987)., Asymmetric wave propagation in an elastic half-space by a method of potentials. J. Appl. Mech., 54(1), p121-

۲۲- Pak, R.Y.S, Guzina BB. (2002)., Three-dimensional Green’s functions for a multi-layered half-space by displacement potentials. J Eng Mech ASCE 2002;128(4):449–۴۶۱

۲۳- Pak R.Y.S. and Sophers JMD. (1991)., Rocking rotation of a rigid disc in a half-space. International journals of solids and structure , 28(3):389-

۲۴-Pan, Y. C. and Chou, T. W.(1979)., Green functions solutions for concerning an elastic body characterized materials,. Int . J. Eng, Sci. 17(5), 545-

۲۵- Rahimian, M.and Eskandari-Ghadi and M., Pak, R.Y.S. and Khojasteh, A. (2007)., Elastodynamic Potential Method for Transversely Isotropic Solid. ASCE J. Engrg. Mech, 133,

۲۶- Sneddon, I.N. (1951)., Fourier transforms. ,McGraw-Hill, New York, N. Y

۲۷- Sneddon, I. N. (1972)., The use of integral transforms. McGraw-Hill, New York, N. Y

۲۸- Sneddon, I.N. (1972)., Mixed Boundary Value Problems, New York, McGraw-Hill

۲۹-Wang, M. Z. And Wang, W., Completeness ans Nonuniqueness of General Solutions of Transversely Isotropic Elasticity,. Int. J. Solids Struct. Vol. 32 No. 374, pp 501-

۷- Elliott, H. A. (1948)., Three dimensional stress distribution in hexagonal aeolotropic crystals. ,Proc. camb. Phil. Soc. Vol. 44, pp 522-

۸- Eskandari-Ghadi, M. (2005)., A complete solutions of the wave equations for transversely isotropic media., J. of Elasticity,

۹- Eskandari-Ghadi, M and Pak R.Y.S., and  Ardeshir-Behrestaghi. (2008)., Transversely isotropic elastodynamic souloution of finite layer on a infinite subgrade under surface loads. Soil Dyn Earthquake Eng 2008; 28(12):p986–۱۰۰۳

۱۰- Eskandari-Ghadi M and Sture S, Pak R. Y. S and Ardeshir-Behrestaghi A. (2009)., A tri-material elastodynamic solution for a transversely isotropic full-space. Int J Solids Struct 2009, doi:10.1016/j.ijsolstr

۱۱-Eskandari-ghadi and M. Ardashir-Behrestaghi.A (2010)., Forced vertical vibration of rigid circular disc buried in aarbitary depth of transversly isotropic half-space, Soil Dynamics and Earthquake Engineering. Vol30, No7, p 547-

مقدمه

در این مقاله ابتدا پاسخ محیط نیم‏‏‏‏‏ بینهایت لایه ای‏ با رفتار ایزوتروپ جانبی تحت اثر نیروی متمرکز سطحی دلخواه در حالت استاتیکی در محدوده‏‏‏‏ی‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏ خطی- ارتجاعی به دست ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏آید. سپس ماتریس سختی پی صلب مستطیلی مستقر بر محیط مذکور در حالت استاتیکی تعیین می‌شود. برای‏ حل، ابتدا معادلات تعادل در فصل اول  در دستگاه مختصات استوانه‌ای‏ برای‏ هر‏‏‏‏یک از لایه‏ها نوشته شده و سپس با استفاده از روابط تنش-کرنش و کرنش- تغییرمکان، معادلات برحسب تغییرمکان‌ها ‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏نوشته می‌شوند. این معادلات به صورت دستگاه معادلات دیفرانسیل با مشتقات جزئی ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏باشند. به منظور مجزاسازی آن‏ها، از دو تابع پتانسیل اسکالر در هر لایه استفاده ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏شود. معادلات حاکم بر توابع پتانسیل، معادلات دیفرانسیل با مشتقات جزئی از مرتبه ۴ و ۲ ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏باشند.  برای‏ حل معادلات حاکم بر توابع پتانسیل در هر لایه با توجه به شرط منظم بودن از تبدیل انتگرالی هنکل نسبت به مختصه شعاعی و تبدیل فوریه بر حسب مختصه آزیموتی استفاده کرده و جواب در حالت کلی برای‏ کلیه لایه‌ها ‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏ تعمیم داده می‏شود

در ادامه، شرایط مرزی در سطح آزاد نیم‏‏‏‏‏ فضا و شرایط پیوستگی بین لایه‌ها‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏ نوشته شده و با استفاده از شرایط پیوستگی، معادلات ارتباطی بین ضرایب مجهول توابع پتانسیل لایه‏ها ‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏که خود ناشی از انتگرال گیری می باشند، بدست ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏آیند. با برقراری رابطه بازگشتی بین ضرایب لایه‏ها‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏، کلیه ضرایب به جز ضرایب نیم‏‏‏‏‏ فضای‏ تحتانی حذف شده و ضرایب نیم‏‏‏‏‏ فضای‏ تحتانی به کمک شرایط مرزی در سطح آزاد تعیین ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏شوند و از آن بقیه ثابت‌ها‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏ با استفاده از ارتباط بین لایه‌ها‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏ (شرایط پیوستگی) بدست ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏آیند. سپس، با استفاده از روابط تنش- تابع پتانسیل و تغییر مکان- تابع پتانسیل، تنش‌ها ‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏و تغییرمکان‌ها‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏ در فضای‏ هنکل به دست آمده و با کمک تبدیل معکوس هنکل و سری فوریه، تنش‌ها‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏ و تغییر مکان‌ها‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏ در فضای‏ واقعی به دست می‏آیند

در فصل دوم با تغییر دستگاه مختصات از استوانه‌ای‏ به دکارتی، توابع گرین تغییر‌مکان و تنش در دستگاه مختصات دکارتی به‌دست آمده و با انتقال دستگاه مختصات از مبداء به‏‏‏‏ یک نقطه سطحی دلخواه، توابع تغییرمکان و تنش برای‏ بارگذاری خارج از مبداء مختصات بدست می‌آیند. بدین ترتیب توابع گرین برای‏ بار دلخواه تعیین می‌شوند. با استفاده از توابع گرین تغییرمکان و تنش، این توابع برای‏ نیروی موثر بر‏‏‏‏ یک سطح مربع مستطیل تعیین می‌شوند

در فصل سوم با نوشتن معادلات به فرمت اجزاء محدود و استفاده از المانی جدید به نام المان گرادیانی پویا، تنش تماسی قائم و افقی در هر گره مربوط به شالوده چنان تعیین می‌شوند که شرط تغییرمکان صلب و‏‏‏‏ یا دوران صلب در هر نقطه از صفحه را ارضاء نماید. دستگاه معادلات حاکم بر تنش تماسی قائم و افقی به صورت عددی حل می‌شود. با استفاده از تنش‏های‏ تماسی نیروهای‏ کل تماسی و گشتاور خمشی کل در محل تماس شالوده و نیم‏‏‏‏‏ فضای‏ لایه ای‏ به دست ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏آید. ماتریس تبدیل بردار تغییر مکان‏ها ‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏و دوران صلب به نیروهای‏ افقی، قائم و گشتاور خمشی را ماتریس سختی نیم‏‏‏‏‏ فضا برای‏ شالوده ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏نامیم. این ماتریس با برقراری ارتباط اخیرالذکر بدست ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏آید. ماتریس سختی ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏تواند جایگزین خاک زیر شالوده شده و به افزایش دقت در آنالیز سازه‏های‏ سنگین مستقر بر محیط‏های‏ ایزوتروپ جانبی لایه ای‏  کمک کند

فصل اول:معادلات تعادل در محیط‏های‏ ایزوتروپ جانبی لایه ای

۱-۱- مقدمه

تحلیل استاتیکی و دینامیکی سازه‏های‏ سنگین مستقر بر زمین (شکل ۱-۱) نیاز به فهم چگونگی انتقال نیرو از سازه به خاک و جنبه‏های‏ مختلف آن را دارد، چه در غیر این صورت نتایج تحلیل سازه ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏تواند با دقت کم همراه باشد. در این موارد، همواره برای‏ داشتن طرح مطمئن نیاز به ساده سازی‌های‏ محافظه کارانه و در نتیجه غیراقتصادی می‌باشد. یکی از راه‌های‏ در نظر گرفتن اندرکنش خاک و سازه، المان‌بندی محیط زمین زیر ساختمان به روش اجزاء ‌محدود (شکل ۱-۲) می‌باشد. تحلیل سازه به همراه محیط زیرین مطابق این روش اولاً بسیار پرهزینه بوده و ثانیاً به علت عدم توانایی المان‌بندی زمین تا بی‌نهایت ممکن است از دقت مناسب برخوردار نباشد. بسیاری از مصالح در طبیعت و نیز ساخته‏های‏ مصنوعی رفتار ایزوتروپ جانبی دارند. از آنجمله می توان به رفتار اعضای‏ مستقیماً برگرفته از تنه درختان، محیط خاکی زیر ساختمانها ‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏و صفحات چند لایه نام برد .اهمیت بررسی پاسخ این مصالح از دیر باز مورد توجه بوده بطوری که میشل در سال ۱۹۰۰ میلادی به بررسی یک نیم فضای ایزوتروپ جانبی تحت نیروهای سطحی دلخواه پرداخته است [۱۹] . لخنیتسکی در سال ۱۹۴۰ محیط ایزوتروپ جانبی را در حالت متقارن محوری و بدون پیچش در نظر گرفته و معادلات درگیر حاکم بر مسئله را با معرفی یک تابع پتانسیل به صورت مجزا  و قابل حل درآورده است [۱۷] . نواکی تابع پتانسیل لخنیتسکی را مجدداًٌ به دست آورده و ادعا کرده است که این جواب محدود به مسائل متقارن نیست [۲۰] . هو محیط ایزوتروپ جانبی را در حالت کلی مورد توجه قرار داده و تابع پتانسیل لخنیسکی را برای‏ حالت کلی تکمیل کرده است [۱۵]. این تابع هم اکنون در ادبیات مکانیک محیط پیوسته با رفتار ایزوتروپ جانبی به نام تابع لخنیسکی- هو- نواکی مشهور است. بررسی محیط با رفتار ایزوتروپ جانبی به وسیله دیگران همچون ونگ و ونگ [۲۹] ، ایوبنکس و استرنبرگ [۱۴] ،  الیوت [۷] و پن وچو [۲۴] نیز در حالت استاتیکی بررسی شده است. این محیط در حالت دینامیکی توسط اسکندری قادی [۸] ، رحیمیان و همکاران [۲۵] و دیگران مورد توجه قرار گرفته است

در واقعیت خواص محیط زیر شالوده بر حسب عمق ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏تواند تغییر کند. در نتیجه به منظور واقعی‌تر کردن تحلیل فوق‌الذکر، در این پایان نامه محیط ایزوتروپ جانبی به عنوان محیط مبنا در نظر گرفته شده و اجتماع لایه ای‏ محیط‏های‏ ایزوتروپ جانبی با خواص متفاوت تحت اثر تغییر مکان صلب صفحه مستطیلی مورد تحلیل قرار ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏گیرد. با این بررسی تنش‏های‏ تماسی بین شالوده مستطیلی و نیم‏‏‏‏‏ فضای‏ لایه ای‏ ناشی از تغییر مکان‏‏‏‏ یا دوران صلب شالوده به دست آیند. تنش تماسی در لبه‏های‏ شالوده صلب رفتاری تکین از خود نشان ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏دهد و درک این مفهوم به طراحی سازه‏های‏ سنگین و آنالیز نشیمن آن بسیار کمک ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏کند. به علاوه، با تعیین نیروهای‏ تماسی کل بین شالوده و نیم‏‏‏‏‏ فضا بردار مجموع نیروها ‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏و گشتاورهای‏ تماسی بدست ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏آیند. مجموعه تغییر مکان‏ها ‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏و دوران صلب شالوده نیز‏‏‏‏ یک بردار با همان بُعد بردار نیروها‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏ تشکیل ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏دهد. ماتریس تبدیل بردار تغییر مکان به بردار نیروها‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏ را ماتریس سختی و معکوس این ماتریس،‏‏‏‏ یعنی ماتریس تبدیل بردار نیروها ‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏به بردار تغییر مکان را ماتریس نر‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏ می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏نامند. درایه‏های‏ ماتریس سختی پارامترهای‏ متمرکز جایگزین محیط لایه ای‏ ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏باشند. این پارامترها‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏ که همان سختی فنرهای‏ معرف محیط لایه ای‏ ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏باشند (شکل ۱- ۳)، اثر محیط لایه ای‏ روی شالوده و در نتیجه سازه روی شالوده را مدلسازی ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏کنند. این پارامترها‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏ در متون مرتبط فنر وینکلر نیز نام دارند

۱-۲- بیان مساله و معادلات حاکم

یک محیط نیمه متناهی ارتجاعی شامل  لایه موازی با خصوصیات مصالح مختلف که همگی دارای‏ رفتار ایزوتروپ جانبی می‌باشند در دستگاه مختصات استوانه‌ای  چنان در نظر گرفته می‌شود که محور  عمود بر صفحه ایزوتروپی تما‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏لایه‌ها ‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏بوده و جهت مثبت محور  به سمت داخل نیم فضا ‏می‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏باشد (شکل ۱-۴)

  راهنمای خرید:
  • همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
  • ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
  • در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.