پاورپوینت کامل مشتق وکاربردهای آن ۱۲ اسلاید در PowerPoint
توجه : این فایل به صورت فایل power point (پاور پوینت) ارائه میگردد
پاورپوینت کامل مشتق وکاربردهای آن ۱۲ اسلاید در PowerPoint دارای ۱۲ اسلاید می باشد و دارای تنظیمات کامل در PowerPoint می باشد و آماده ارائه یا چاپ است
شما با استفاده ازاین پاورپوینت میتوانید یک ارائه بسیارعالی و با شکوهی داشته باشید و همه حاضرین با اشتیاق به مطالب شما گوش خواهند داد.
لطفا نگران مطالب داخل پاورپوینت نباشید، مطالب داخل اسلاید ها بسیار ساده و قابل درک برای شما می باشد، ما عالی بودن این فایل رو تضمین می کنیم.
توجه : در صورت مشاهده بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل می باشد و در فایل اصلی پاورپوینت کامل مشتق وکاربردهای آن ۱۲ اسلاید در PowerPoint،به هیچ وجه بهم ریختگی وجود ندارد
بخشی از مطالب داخلی اسلاید ها
پاورپوینت کامل مشتق وکاربردهای آن ۱۲ اسلاید در PowerPoint
اسلاید ۳: در نگاه نخست اینطور به نظر میرسید که بین مسئلهی یافتن مساحت سطح زیر یک نمودار و موضوع تعیین خط مماس بر منحنی در یک نقطه رابطهای وجود ندارد، اما اولین کسی که دریافت این دو مفهومِ به ظاهر دور از هم، در واقع ارتباط نسبتاً نزدیکی با هم دارند آیزاک بارو معلم آیزاک، نیوتون، بوده است. اما مفهوم مشتق به شکل امروزی آن، نخستین بار در سال ۱۶۶۶ میلادی توسط نیوتون و به فاصلهی چند سال بعد از او، توسط گوتفرید لایبنیتز، مستقل از یکدیگر پدید آمد. این دو دانشمند در ادامهی کار خود، باز هم به طور مستقل، بخش دوم آنالیز ریاضی یعنی حساب انتگرال را عرضه کردند که اساس آن بر عمل انتگرالگیری قرار دارد. نیوتون از شیوهی استدلال سینماتیک و با دیدگاه فیزیکی به بررسی مشتق پرداخته و از آن برای بدست آوردن سرعت لحظهای استفاده میکرد. اما لایبنیتز با دیدگاهی هندسی، از مشتق برای بدست آوردن ضریب زاویهی مماس در منحنیها استفاده میکرد. هر یک از این دو دانشمند نمادهای جداگانهای را برای نشان دادن مشتق به کار میبردند. پیشرفت حساب دیفرانسیل و انتگرال در دوران بعد به آگوستَن لویی کوشی، برنهارد ریمان و برادران برنولی، یعنی یاکوب و یوهان، مربوط میشود. گیوم لوپیتال ((Guillaume de l’Hôpital، دانشمند فرانسوی، در سال ۱۶۹۶ نخستین کتاب درسی مربوط به آنالیز ریاضی را با نام «آنالیز بینهایت کوچکها برای بررسی منحنیها» منتشر کرد که در واقع خلاصهای از درسهایی بود که یوهان برنولی به عنوان معلم برای او نوشته بود.Newton and Leibniz
اسلاید ۴: در این کتاب، قاعدهی رفع ابهام در حد، با استفاده از مشتق نیز آمده که به قاعدهی هوپیتال مشهور است ولی در واقع متعلق به یوهان برنولی بودهاست.مفهوم مشتق در شکل خط مماس تاریخ بسیار کهنی دارد و برای هندسهدانان یونانی از جمله اقلیدس، ارشمیدس و آپولونیوس شناختهشده بودهاست. ارشمیدس مفهوم بینهایت کوچک را معرفی کرد، هرچند که این مفهوم برای مطالعهی سطحها و حجمها به کار میرفت و توجهی به مشتقها و مماسها نمیشد.میتوان بهرهگیری از بینهایت کوچکها برای مطالعهی نرخ تغییرات را در ریاضیات هند از حدود سال ۵۰۰ میلادی مشاهده کرد. آریابهاتا که اخترشناس و ریاضیدان بود، از این مفهوم برای مطالعهی حرکت ماه استفاده کرد. باسکارای دوم توسعهی قابل توجهی در استفاده از بینهایت کوچکها برای محاسبهی نرخ تغییرات ایجاد کرد. میتوان گفت که بسیاری از تعریفهای کلیدی در حساب دیفرانسیل از جمله قضیهی رل، در کارهای او دیده میشود.شرفالدین طوسی، ریاضیدان ایرانی، نخستین کسی بود که مشتق چندجملهایهای درجه سه را کشف کرد. کتاب فی المعادلات او، مفاهیمی از جمله تابع مشتق و بیشینه و کمینهی منحنی را برای حل معادلات درجه سه که ممکن است جواب مثبت نداشته باشند، توسعه داد. توسعهی نوین حسابان مدیون آیزاک نیوتن و گوتفرید لایبنیتز است که رویکردهای مستقل و یکسانی را برای مشتقگیری و مشتقات فراهم کردند. نکتهی اصلی که این اعتبار را به آنها داد، قضیهی اساسی حسابان بود که مشتق و انتگرال را به یکدیگر مرتبط میکرد. این قضیه، بسیاری از روشهای پیشین برای محاسبهی سطحها و حجمها را که از دوران ابن هیثم توسعهی چندانی نیافته بودند، منسوخ کرد.
اسلاید ۵: نیوتن و لایبنیتز تحقیقات خود دربارهی مشتق را بر کارهای مهم انجام شده توسط ریاضیدانان پیشین از جمله پیر دو فرما، آیزاک بارو، رنه دکارت، کریستیان هویگنس، بلز پاسکال و جان والیس بنا کردند. نیوتن نخستین کسی بود که از مشتق در فیزیک نظری بهره گرفت. لایبنیتز بسیاری از نمادها را توسعه داد که اکنون نیز به کار میروند.از سدهی هفدهم میلادی بسیاری از ریاضیدانان در زمینهی مشتق پژوهش کردهاند. در سدهی نوزدهم، ریاضیدانان دیگری از جمله آگوستین لویی کوشی، برنهارت ریمان و کارل وایرشتراس تحقیق در این زمینه را تکمیل کردند. در همین دوره، مشتق به فضای اقلیدسی و صفحهی مختلط تعمیم داده شد. مشتق تابعاگر (x,f(x))نقطهای از نمودار تابع y=f(x) و(x+h,f(x+h)) نقطهی دیگری ازاین نمودار باشد، آنگاهf(x)=f(x+h)–f(x) و شیب خط قاطع عبارت است از:کسر فوق خارج قسمت تفاضلی f در xنامیده می شود. اگرx ثابت نگه داشته شود و h به سمت صفرمیل کند، آنگاه خارج قسمت تفاضلی f در x اگر فقط به xبستگی داشته باشد به مقداری میل می کند که به آن شیب خط مماس گفته می شود. به عبارت دیگر، حاصل حد زیر در صورت وجود ضریب زاویه ی خط مماس نمودارتابع f درx را نتیجه می دهد:
- همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
- ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
- در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.
مهسا فایل |
سایت دانلود فایل 