پاورپوینت کامل تاریخچه عکاسی ۹۴ اسلاید در PowerPoint


در حال بارگذاری
10 جولای 2025
پاورپوینت
17870
2 بازدید
۷۹,۷۰۰ تومان
خرید

توجه : این فایل به صورت فایل power point (پاور پوینت) ارائه میگردد

 پاورپوینت کامل تاریخچه عکاسی ۹۴ اسلاید در PowerPoint دارای ۹۴ اسلاید می باشد و دارای تنظیمات کامل در PowerPoint می باشد و آماده ارائه یا چاپ است

شما با استفاده ازاین پاورپوینت میتوانید یک ارائه بسیارعالی و با شکوهی داشته باشید و همه حاضرین با اشتیاق به مطالب شما گوش خواهند داد.

لطفا نگران مطالب داخل پاورپوینت نباشید، مطالب داخل اسلاید ها بسیار ساده و قابل درک برای شما می باشد، ما عالی بودن این فایل رو تضمین می کنیم.

توجه : در صورت  مشاهده  بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل می باشد و در فایل اصلی پاورپوینت کامل تاریخچه عکاسی ۹۴ اسلاید در PowerPoint،به هیچ وجه بهم ریختگی وجود ندارد


بخشی از مطالب داخلی اسلاید ها

پاورپوینت کامل تاریخچه عکاسی ۹۴ اسلاید در PowerPoint

اسلاید ۴: طرز کار دوربین عکاسی در هنگام عکسبرداری عدسی دوربین را جلو و عقب می‌بریم تا آنکه در منظره یاب تصویر واضحی از جسم مورد نظر دیده شود. در این حالت تصویری حقیقی و معکوس می‌تواند روی فیلم تشکیل شود که با فشار دکمه دیافراگم باز می‌شود و نور در مدت مشخص به فیلم می‌رسد و تصویر جسم را روی آن بوجود می‌آورد.

اسلاید ۵: هدف اصلی از ساخت دوربینهای دیجیتال : هدف اصلی سازندگان دوربینهای دیجیتال این بوده است که رزولوشن یا دقت دوربینهای دیجیتال را به دوربینهای فیلمی برسانند. رزولوشن بالاتر به عکاس اجازه می‏دهد تا عکس را در اندازه‏های بزرگتری چاپ کند یا بتواند قسمت‏هایی از عکسهای خود را جدا کرده، بزرگ و چاپ کند، بدون اینکه کیفیت آن کاهش یابد .دسته بندی دوربینهای دیجیتال :به دو دسته تقسیم می‏شوند : دوربینهای تمام اتوماتیک و دوربینهای SLR. دوربینهای دیجیتال تمام اتوماتیک: ظاهری مانند ۳۵ میلیمتری تمام اتوماتیک دارند، دوربینهای SLR حرفه‏ای مانند نیکون D1 لنزهای قابل تعویض، فلاش‏های قوی و کنترلهای دستی زیادی دارند .مهمترین وجه تمایز دوربینهای دیجیتال :۱- قابل تعویض بودن لنزها۲- بدنه یا LCD قابل چرخش۳- امکان ضبط فیلم۴- کیفیت۵- میزان زوم اپتیکال

اسلاید ۶: هیجان و لذت دیدن عکس، در همان لحظه که گرفته مى شود، رمز نفوذ دوربین عکاسى دیجیتال در بین مردم است؛ هر چند که نقش هزینه کم، قابلیت اصلاح اشتباه با تکرار، امکان ویرایش سریع و آسان و قابلیت ارسال آسان عکس هاى دیجیتال را نباید نادیده گرفت. اما واقعاً یک دوربین عکاسى دیجیتال چیست و چگونه توانسته است در ظرف مدت کوتاهى اینچنین در میان طیف گسترده اى از عکاسان حرفه اى گرفته تا کاربران خانگى گسترش یابد؟دوربین عکاسى دیجیتال یک دوربین عکاسى معمولى است که در آن یک سنسور نورى پیچیده جاى فیلم عکاسى را گرفته است. نور (که با باز و بسته شدن پرده شاتر در دوربین هاى اپتیکال به سطح حساس به نور فیلم مى تابید و باعث نقش بستن تصویر بر روى فیلم مى شد) در دوربین هاى دیجیتال روى سنسور نورى تابیده مى شود. این سنسور نورى پیچیده، یک شبکه از سنسور هاى نورى ریزتر است که هر نقطه از آن وظیفه ثبت نور و رنگ یکى از نقاط تصویر را بر عهده دارد. نورهاى رسیده به سنسورها در قالب سیگنال هاى الکتریکى به اطلاعات دیجیتال تبدیل مى شوند و در انتها این اطلاعات به صورت یک فایل تصویرى روى حافظه دوربین ذخیره میشوند.از فیلم تا سنسورتاریخچه دوربین هاى عکاسى دیجیتال به زمانى باز مى گردد که اولین سنسورهاى ثبت تصاویر ابداع شد. سال ۱۹۵۱ اولین سنسور ثبت دیجیتال تصاویر در یک دستگاه ضبط ویدیویى بکار رفت. استفاده از کامپیوتر در آن زمان هنوز رایج نشده بود و این دوربین ضبط ویدیویى، تصاویر را روى نوار ذخیره مى کرد.

اسلاید ۷: از فیلم تا سنسوردر طول دهه ۶۰ میلادى، ناسا اولین تلاش ها براى استفاده از سنسورهاى دیجیتال (به جاى آنالوگ) را براى ثبت تصاویر سطح ماه آغاز کرد و با گسترش کامپیوتر، براى پردازش و بهبود تصاویر دریافتى، از کامپیوتر بهره جست. استفاده دیگر ثبت دیجیتالى تصاویر در آن زمان ماهواره هاى جاسوسى بودند و تلاش در جهت گسترش این شاخه، دانش ثبت تصاویر دیجیتالى را تا حد زیادى گسترش بخشید.اختراع اولین «دوربین بدون فیلم» در سال ۱۹۷۲ به نام کمپانى تگزاس اینسترومنت ثبت شده است. در آگوست ۱۹۸۱ «کمپانى سونى اولین نمونه تجارى دوربین هاى عکاسى دیجیتال را با نام Sony Mavica وارد بازار نمود. این دوربین تصاویر را روى یک مینى دیسک ذخیره مى کرد و این مینى دیسک از طریق یک دیسکخوان ویدیویى ویژه به تلویزیون و پرینتر متصل مى شد. اگرچه نمیتوان Sony Mavica را یک دوربین عکاسى دیجیتال نامید، اما در واقع این دوربین آغازگر نهضت دوربین هاى دیجیتال عکاسى بود.در اواسط دهه ۷۰ میلادى کمپانى کداک چندین نمونه سنسور حالت جامد ابداع کرد که قادر بودند نور را مستقیماًِ به تصاویر دیجیتال تبدیل کنند و در سال ۱۹۸۶ محققین این کمپانى اولین دوربین دیجیتال عکاسى با وضوح ۱.۴ میلیون پیکسل را ابداع کردند. تصاویر دیجیتال حاصل از این دوربین در ابعاد ۱۸*۱۳ سانتیمتر با کیفیت ۱۹۰DPI قابل چاپ بود. یک سال بعد کداک هفت محصول متنوع براى ثبت، ذخیره، ویرایش و انتقال تصاویر دیجیتالى وارد بازار نمود.فتو سى دى نیز اولین بار در سال ۱۹۹۰ توسط کداک به دنیا معرفى شد. این ابداع مصادف بود با پیشنهاد ارایه اولین سیستم استاندارد براى توصیف رنگ در کامپیوتر توسط این کمپانى. کداک یک سال بعد اولین دوربین حرفه اى عکاسى دیجیتال را از مونتاژ یک سنسور ۱.۳ مگاپیکسلى روى یک دوربین اپتیکال Nikon F-3 تولید کرد.

اسلاید ۸: از فیلم تا سنسورتفاوت کلیدی بین یک دوربین دیجیتال و یک دوربین نگاتیوی آنالوگ این است که دوربین‌های دیجیتالی فیلم ندارند و در عوض سنسوری دارند که می‌تواند تابش نور را به بار الکتریکی تبدیل کند. سنسورهای دیجیتالی اغلب دارای ابعاد بسیار کوچکتری نسبت به نگاتیو‌های ۳۵میلی‌مترهستند. البته اندازه‌های بزرگ‌تری هم ساخته شده‌اند. مثلا‌ً در دوربین CANON EOS -1Ds نوعی حسگر به کار رفته است که۴۲ x 63 mm می‌باشد و وضوحی برابر۱/۱۱مگاپیکسل دارد.

اسلاید ۹: از فیلم تا سنسورسنسور تصویری به کار رفته در اغلب دوربین‌های دیجیتالی موجود از نوع ‌Charge Coupled Device)CCD) می‌باشد. البته برخی دوربین‌های ساده‌تر از نوع ۹دوم سنسور‌ها یعنی تکنولوژی Complementary Metal Oxide Semiconductor)CMOS) نیز استفاده می‌کنند. علیرغم بهبود‌هایی که در سنسور‌های CMOS حاصل شده و احتمالاً می‌تواند در آینده بیشتر مورد استقبال عموم قرار گیرد اما بعید به نظر می‌رسد بتواند به طور کلی در دوربین‌های حرفه‌ای‌تر جانشین سنسور‌های CCD شود. این دو، از نظر ماهیت عملا یکسان هستند تنها از لحاظ استفاده از نور دریافتی متفاوت از یکدیگر عمل می‌کنند. بنابراین بیشتر چیزهایی که درباره ‌CCD‌ها یاد می‌گیریم قابل تعمیم به CMOS‌ها نیز هستند.سنسور‌های نوری مجموعه‌ای متشکل از هزاران ردیف بسیار کوچک از دیود‌های حساس به نور هستند که می‌توانند فوتون‌های نور را به بار الکتریکی تبدیل کنند. این دیود‌های یک‌سویه را Photosite می‌نامند. هر فوتوسایت به تابش نور حساس است و مسلماً هرچه نور تابیده‌ شده بر آن شدت بیشتری داشته باشد، بار الکتریکی بیشتری در آن انباشته خواهد شد.در حسگر‌های CCD این بار الکتریکی انباشته شده در هر فوتوسایت به صورت تک به تک و ردیف به ردیف خوانده می‌شود و اصولاً تشخیص مقدار یک بار الکتریکی وابسته به مکان آن در میان دیگر فوتوسایت‌ها می‌باشد. ضمن این‌که قبل از آن‌که سنسور نوری بتواند آماده‌ عکسبرداری شود لازم است که تمام اطلاعات مربوط به عکس قبلی از روی آن به طور کامل خوانده و حذف شود. اما در سنسور‌های CMOS، هر یک از عناصر حساس به نور دارای یک آدرس طولی و عرضی مشخص است و می‌تواند به طور منفرد توسط محور‌های X و Y آدرس‌دهی و خوانده شود.

اسلاید ۱۰: دقیقا از مرحله‌ای که فوتون‌های نور توسط فوتوسایت‌ها به الکترون تبدیل می‌شوند، تفاوت بین دو نوع حسگر اصلی آشکار می‌شود. مسلماً مرحله‌ بعدی عبارت است از خواندن مقادیر بار انباشته شده در هر سلول و تشخیص پیکسل رنگی مربوط به آن. در سنسور‌های CCD بار الکتریکی شارژ شده از یک گوشه‌ سنسور خوانده شده و ردیف به ردیف جلو می‌رود و به طور همزمان یک مبدل آنالوگ به دیجیتال متناوب با تمام مقادیر دریافتی از پیکسل‌ها را به مقادیر دیجیتالی تبدیل می‌کند. اما CMOSها دارای چندین ترانزیستور مختلف در سر راه داده‌ها هستند که با تقویت و جابه‌جا کردن بار‌های الکتریکی توسط سیم‌های متصل به آن‌ها، مقادیر را جداگانه و تک به تک به پردازشگر ارسال می‌کنند. هرچند که انعطاف‌پذیری این شیوه به مراتب بالاتر از روش سطر به سطر است و می‌تواند برای کاربرد‌هایی مثل فوکوس خودکار و اندازه‌گیری نور مفید واقع شود. اما عملا سیگنال دریافتی ازCCDها شفاف‌تر می‌باشد. CCDها برای ایجاد قابلیت ارسال بار بدون اعوجاج و تحریف، از یک پروسه‌ صنعتی خاص استفاده می‌کنند و این پروسه روشی را ارایه می‌دهد که موجب خلق تصاویری بسیار شفاف می‌شود. اصلی‌ترین تفاوت‌های بین سنسورهای CMOS و CCD را می‌توان به این شکل فهرست کرد: Cmos در مقابل CCD CCD image sensorCMOS image sensor

اسلاید ۱۱: سنسور‌های CCD همانطور که در بالا گفته شد تصاویری با کیفیت بالاتر و اختلال کمتری به‌وجود می‌آورند. اما به طور تجربی ثابت شده که سنسور‌های CMOS برای ایجاد نویز و اختلال بسیار مستعد‌ترند. از آنجا که هر پیکسل در سنسور‌های CMOS دارای چندین ترانزیستور مرتبط است که در کنار آن‌ها قرار می‌گیرد، حساسیت این سنسور‌ها به نور پایین‌تر می‌آید. چرا که بسیاری از فوتون‌های نور به جای این‌که با سطح دیودهای نوری برخورد کنند با این ترانزیستورها برخورد کرده و به هدر می‌روند. سنسور‌های CCD به مصرف توان بالا معروفند. این سنسور‌ها در مقایسه با سنسورهای CMOS تقریبا ۱۰۰ مرتبه بیشتر از باتری استفاده می‌کنند.CCD ها به علت تولید بالاتر، بسیار بیشتر ازCMOS ها مورد تحقیق و بررسی قرار گرفته‌اند و مسلما روش‌های تولید اقتصادی‌تر و با کیفیت‌تری برای آن‌ها ابداع شده است. به همین دلیل می‌توان مشاهده کرد که اغلب دوربین‌های با کیفیت و مارک‌های معتبر جهان از این سنسور بهره می‌برند. از آن‌جا که تقویت کننده سیگنال‌های نوری در CMOS بلافاصله بعد از هر فوتوسایت قرار دارد بنابراین این نوع حسگر‌ها می‌توانند تصاویر را دو برابر سریع‌تر نسبت بهCCD ها انتقال دهند.براساس گفته‌های بالا متوجه می‌شوید کهCCD ‌ها بیشترین استفاده را در دوربین‌هایی دارند که بیشتر بر کیفیت بالاتر تصویر، مقدار بیشتر پیکسل‌های تصویر و حساسیت به نور بالا‌تر تأکید دارند. اما در عوض سنسور‌هایCMOS دارای قیمت کمتر هستند و بیشتر در دوربین‌هایی به کار می‌روند که از نظر اقتصادی به صرفه بوده و دارای منبع انرژی محدودتری می‌باشند.

اسلاید ۱۲: تکنولوژی سنسورهای تصویر CMOS کانن کیفیت عکس:یکی از مشخصه های مهم یک عکس رزولوشن بالاتر آن است و رزولوشن بالاتر به معنی جزئیات بیشتر در عکس است که موجب می‌شود در هنگام بزرگ کردن عکس‌ها، کمتر از کیفیت اصلی خارج شوند.(بعدا در این زمینه بحث خواهد شد)همچنین عکس‌هایی که با سنسورهایی با فریم کامل (۳۵mm) گرفته شوند، باز هم دارای وضوح بالاتری می‌باشند که قابلیت چاپ آنها تا سایزهای بسیار بزرگ پوستری را فراهم می‌آورد. علت این امر بعدا شرح داده می‌شود.

اسلاید ۱۳: نادرستی در رنگ و نویز برکیفیت عکس تأثیر گذارند؛اما توسط نرم افزارها تصحیح می‌شوند که بسیار وقت گیر می‌باشد و باعث کاهش شارپنس تصویر می شود.نادرستی رنگ از جمله نقصهای ذاتی ‌است که بر روی سنسورهای تک صفحه رایج است. با ساخت CMOS این مسأله به حداقل رسیده است.این کار به وسیله تکنولوژی پیشرفته کاهش نویزی انجام می‌شود که شامل سه لایه پیچیده فیلتر پایین گذر و پردازنده تصویر Digic II می‌شود. پی آمد نویز به صورت دانه هایی در نقاط سایه و روشن دیده می‌شود. یکی دیگر از مشکلات ناشی از رنگهای نادرست، زمانی به وجود می آید که از اجسام و یا صفحات شطرنجی با فرکانس تکرار بالا عکاسی می کنیم. در اینگونه صفحات فرکانس نور بالاتر از فرکانس تکرار فیلتر هایRGB است. در فیلترهای پایین گذر سنسورهای CMOS کانن، نور بصورتی عبور داده می‌شوند که توانایی ایجاد رنگ صحیح را داشته باشد.کاهنده نویز

اسلاید ۱۴:

اسلاید ۱۵: به وجود آوردن پشت زمینه بلور در پرتره ها از‌ خصوصیات منحصر به فرد دوربین‌های SLR می‌باشد.این مشخصه با دیافراگم و فاصله کانونی تنظیم می‌شود.در دوربینهای دیجیتال اندازه سنسورها درمقدار بلور بودن مؤثر است. زیرا سنسورهای بزرگ توان ارائه عمق میدان بهتر را دارا میباشند.کیفیت در دیجیتال SLR فقط به دلیل تعداد پیکسل‌ها و اندازه سنسور ها نیست. مسلمأ دو دوربین با یک تعداد پیکسل، آن که سنسور بزرگتری داشته باشد؛ بخاطر محدوده دینامیک بالاتر، حساسیت ببیشتر و نسبت سیگنال به نویز ( S/N) بزرگتر، تصویر بهتری ارئه می‌کند. نسبت سیگنال به نویزS/N، مقیاس نشان دادن تمیزی سیگنال دریافتی از سنسور است. بیشتر بودن این مقدار یعنی نویز کمتر و سیگنال تمیزتر. پشت زمینه های بلور

اسلاید ۱۶: دوربینهایی که دارای سنسورهای CMOS بزرگتر هستند به علت داشتن حساسیت زیاد و نویز کمتر، می توانند برای عکس بردار از اجسام در حال حرکت و جنبش سریع در مکانهای کم نور با حساسیت بالا مفید باشند. سنسورهای کانن برکاهنده های بسیار قوی نویز تکیه می کنند تاعکسهایی باکیفیت بالا در حساسیت بالا ارئه دهند.سنسورهای بزرگتر توان ارئه تصاویر باکیفیت تری را نسبت به سنسورهای کوچکتر دارا هستند.این کیفیت به واسطه فتودیودهای بزرگتر در این سنسورها امکان پذیراست.ارتبا میان کیفیت و سنسور و پیکسل را می توان به سطلهای بزرگتر آب نسبت به سطلهای کوچکتر تشبیه کرد. سطل بزرگتر نسبت به سطل کوچکتر، برای جمع آوری آب عملکرد بهتری دارد و در زمانی کمتر، آب بیشتری را جمع می کند. فتودیودها در اینجا نور را جمع می‌کنند. سنسورهای نوری CMOS نه تنها نور راجذب می‌کنند، بلکه دارای یک مکان ویژه در کنار هر فتودیود برای نگهداری شارژ الکتریکی نیز هستند. اگر پایانه‌های جذب نور پنج برابر بزرگتر شوند، می‌توانند پنج برابر نور بیشتر را با همان میزان نوردهی در خود ذخیره کنند. پس سنسور بزرگتر یعنی پیکسلهای بزرگتر و در نتیجه حساسیت بیشتر.

اسلاید ۱۷: سطلهای بزرگ با دهانه های بازتر و قیفی میتوانند باز هم آب بیشتر در زمان کمتری در خود جای دهند.کانن از این تکنیک برای ساخت سنسورهای سی موس استفاده می کند.به طور کلی زمان نوردهی کمتر؛ برابراست با نویز کمتر.این مجموعه بزرگ گردآوری شده می تواند در زمان کمتری همان میزان جذب نور داشته باشد.یعنی قابلیت استفاده از حساسیت بیشتر و نویز کمتر.به عبارت دیگر زمان کمتر در حساسیت بیشتر با نویز کمتر.سطلهای بزرگتر با دهانه های بازتر و عمق بیشتر، یعنی لبریز شدن دیرتر. لبریز شدن دیرتر یعنی پیکسل بزرگتر قادر به جمع آوری نور بیشتری بدون اتلاف می‌باشد. در سنسورهای CMOS، سرریز حداقل نور و ظرفیت بالاتر به معنی محدوده دینامیک وسیعتر، و ثبت دقیقتر تغییرات نور بخصوص در نواحی پرنور می‌باشد. زیادکردن تعداد پیکسلها(فتودیودها)وکم کردن اندازه آنها باعث حساسیت ضعیفتر (بخاطر افزایش شدید نویز) و محدوده دینامیکی کمتر می‌شود. کانن بدون کاهش اندازه فتودیودها، با کاهش فاصله بین میکرولنزها به رزولوشن بالاتر و حساسیت بیشتر دست یافته است. ضمنا با افزایش چگالی مدار داخلی هر کدام از این پیکسلهای کوچکتر، فضای ذخیره نور بیشتری را برای آنها فراهم نموده است. این تکنیک محدوده خروجی سیگنال را در ISOهای کمتر توسعه داده است. بواسطه همین افزایش محدوده و حساسیت بالا، دوربین های EOS دیجیتال کانن دارای انتخاب وسیعتری از تنظیمات ISO هستند.

اسلاید ۱۸: نویزها به دو صورت عمل میکنند.یا به صورت تصادفی و یا به صورت ثابت. حذف کردن نویزهای ثابت به وسیله تکنولوژی کاهش نویز روی خود تراشه‌ امکان‌پذیر است. اما نویزهای تصادفی، در تمامی تصاویر به صورت یکسان باقی نمی‌مانند.کانن با استفاده از تکنولوژی شارژ انتقالی کامل پیکسل، به طور مؤثری موفق به حذف این نویزها شده است.نویزهای تصادفی با پردازش سریع سیگنال افزایش می‌یابد. از این رو سنسورهای CMOS کانن دارای تکنولوژی بی نظیری هستند که با توجه به سطح حساسیت، سیگنال‌ها را به مجرد خواندن تقویت می‌نمایند. سپس سیگنالهای دارای نسبت S/N بالا به تقویت کننده سرعت بالا فرستاده می شوند.

اسلاید ۱۹: نویز با الگوی ثابت از تقویت ناهموار سیگنال در طی تقویت کننده‌های مختلف پیکسل‌ها ایجاد می‌شود. این نویزها در تصاویر متفاوت و در زمانهای مختلف در مناطق ثابتی قابل مشاهده می‌باشند. برای از بین بردن این نویزها، کانن از نسل دوم مدارهای کاهنده نویز روی تراشه استفاده نموده است که میزان نویز الگو ثابت را خوانده و سپس برای رسیدن به سیگنالهای خالص نوری، آن را از سیگنالهای دریافتی کم می‌کند.نویزهای تصادفی با نویزهای ثابت کاملا متفاوت هستند. نویزهای تصادفی هنگامی که سنسور فتودیودهای حاوی شارژ را تخلیه می کند، از بین می‌روند. بنابر این کانن، طراحی جداگانه ای برای فتودیودها و سیستم خواند ن سیگنالها انجام داده است.گام اول انتقال دشارژ باقیمانده در فتودیودها –شامل نور و نویز- به سیگنال خوان مربوطه می‌باشد. سنسور کانن دیود را در حین خواندن و نگهداری اطلاعات اولیه نویز تخلیه می کند. بعد از اینکه اطلاعات سیگنالهای نوری و نویز با هم خوانده شدند، اطلاعات اولیه نویز برای حذف باقیمانده نویز از فتودیود و حذف نویز تصادفی استفاده می شود. بنابر این نسبت سیگنال به نویز بهبود می‌یابد.

اسلاید ۲۰: ممکن است که دو لنز دارای فاصله کانونی یکسانی باشند, ولی میدان دید دو سنسور با سایزهای مختلف یکسان نیست. زیرا زاویه دید دوربینها به اندازه سنسورها بستگی دارد و با کوچک شدن سایز سنسور، میدان دید نیز باریکتر خواهد شد و در نتیجه تصاویری شبیه به لنزی تله فتو ایجاد خواهد شد. سنسورهای Full Frame 35 mm کانن دارای میدان دید بیشتری نسبت به سنسورهایAPS-H و APS-C و همانند دوربینهای ۳۵ م.م. نگاتیوی هستند . بنابراین لنزهای مورد استفاده دردوربینهای آنالوگ بدون هیچ فاکتور و ضریبی برای آنها قابل استفاده می‌شود.

اسلاید ۲۱: سنسورهای بزرگتر کنترل بیشتری را برای بلور بودن پس زمینه ارائه می‌کنند، زیرا در شرایطی که مسافت از جسم و زاویه دید یکسان می‌باشد، دارای فاصله کانونی بیشتری هستند. از این رو سنسورهای بزرگتر قادر به ارائه تصاویر بلور زیباتری (بوکه) در پس زمینه هستند.زمانی به طور کلی، عکاسی در شب و عکسهای نجومی خارج از توانایی دوربینهای دیجیتال وحتی DSLR ها مطرح می‌شدند. زیرا عکسبرداری در جاهای تاریک و کم نور در این دوربینها دارای نویز بسیار زیادی بود.کانن با ارئه دوربینهای دیجیتال اس ال آر همراه با سنسورهای سی موس و با استفاده از تجربه سالهای طولانی تولید و تحقیق بر روی دوربین‌های عکاسی، این مسائل را دگرگون کرد و چهره تازه ای به این تصاویر بخشید.حساسیت باید زمانی پایین باشد که از دیافراگم بزرگ در جاهای پر نوراستفاده می‌کنیم. در چنین مواقعی بالابودن حساسیت موجب صدمه زدن به عکس و از دست رفتن بخشهای پرنور عکس می‌شود. از مهمترین تفاوتهای CMOS های کانن با CCDها ولتاژ کار آنها می‌باشد که در سنسورهای سی موس گاه نصف و در بعضی از مواقع حتی پایین تر از آن است. پایینتر بودن ولتاژ باعث کاهش مصرف انرژی سنسورهای CMOS شده و بنابر این عمر شارژ باتریها تا حد زیادی افرایش می‌یابد.

اسلاید ۲۲: مقدار جزییاتی که هر دوربین می‌تواند روی یک تصویر ضبط کند، رزولوشن (وضوح) نامیده می‌شود و توسط واحد پیکسل اندازه‌گیری می‌شود. هرچه وضوح دوربین شما بالاتر باشد مقدار جزییاتی بیشتری را می‌توانید در تصویر خود بگنجانید و هرچه مقدار این جزییات در تصویر بیشتر باشد می‌توانید در هنگام چاپ اندازه آن را بزرگتر کنید بدون آن‌که تصویر شما محو یا دندانه‌‌دندانه شود. انواع وضوح‌های دوربین‌ها این‌گونه است:۲۵۶*۲۵۶پیکسل: این اندازه وضوح روی دوربین‌های بسیار ارزان قیمت دیده می‌شود و بسیار ناچیز تر از آن است که برای چاپ مورد استفاده قرار گیرد. وضوح نمایشگر برخی از گوشی‌های موبایل در همین حد است و می‌توان از تصاویری با این خصوصیت برای نمایش در آن‌ها استفاده کرد. این وضوح کلاً دربردارنده‌ ۶۵هزار پیکسل است.۶۴۰*۶۴۰ پیکسل: این ابعاد حداقل اندازه وضوح در دوربین‌های واقعی است و بهترین اندازه برای تصاویری است که می‌خواهید آن‌ها را روی وب قرار داده و یا از طریق اینترنت برای کسی کنید. این مقدار وضوح دربردارنده‌ ۳۰۷۰۰۰ پیکسل می‌باشد.۱۲۱۶*۹۱۲پیکسل: اگر تصمیم دارید تصاویرتان را در ابعاد معمولی عکس‌های نگاتیوی چاپ کنید این وضوح بهترین انتخاب است. چرا که اولین نوع وضوح از رده مگاپیکسل محسوب می‌شود و حدودا دارای ۰۰۰/۱سل می‌باشد.وضوح (Resolation)

اسلاید ۲۳: ۱۶۰۰*۱۲۰۰ پیکسل: تصاویری با این مشخصات به عنوان تصاویر وضوح بالا محسوب می‌شوند و می‌توانند بدون هیچ مشکلی تا ابعاد ۳۰*۴۰ سانتی‌متر که بالاترین اندازه پیشنهادی عکاسان برای چاپ نگاتیوهای دوربین‌های ۳۵ میلی‌متری می‌باشد چاپ شوند. این مقدار وضوح دربردارنده‌ حدودا دومیلیون پیکسل رنگی می‌باشد و برای استفاده‌ خانگی بسیار مناسب است.

اسلاید ۲۴: فوتوسایت‌ها و پیکسل‌هادر قسمت قبلی که در مورد وضوح و تعداد پیکسل‌ها صحبت می‌کردیم، احتمالا متوجه شده‌اید که تعداد پیکسل‌ها و بیشترین مقدار وضوح، آن‌چنان که باید باهم هماهنگ نیستند. به عنوان مثال یک دوربین که به ادعای سازنده‌اش دارای ۱/۲ مگاپیکسل است، چطور فقط می‌تواند تصویری با وضوح ۱۲۰۰ ۱۶۰۰x ایجاد کند؟ بگذارید مقدار دقیق را محاسبه کنیم :یک تصویر با وضوح ۱۲۰۰ ۱۶۰۰x (که با دوربین گرفته‌ایم) باید دارای ۱۶۰۰ در ۱۲۰۰ پیکسل یعنی دارای ۰۰۰/۹۲۰/۱ پیکسل باشد. اما ۱/۲ مگاپیکسل به این معنی است که تصویر ما باید ۰۰۰/۱۰۰/۲ پیکسل داشته باشد. این مسئله نه یک حقه‌ دیجیتالی است و نه یک اشتباه محاسباتی از سوی سازنده‌ دوربین

اسلاید ۲۵: این یک اختلاف کاملا حقیقی بین دو عدد است. وقتی سازنده‌ا‌ی ادعا می‌کند که دوربینش ۱/۲ مگاپیکسل است یعنی روی CCD خود ۰۰۰/۱۰۰/۲ عدد فوتوسایت تعبیه کرده است. پس چطور ممکن است بعضی از این فوتوسایت‌ها برای ایجاد تصویر مورد استفاده قرار نگرفته باشند؟ فراموش نکنید که CCD یک وسیله‌ آنالوگ است و مجبور است برای ایجاد بار الکتریکی، از فوتون‌های انباشته شده در فوتوسایت‌ها برای ارسال بار الکتریکی به مبدل آنالوگ به دیجیتال استفاده کند. حتما می‌دانیدکه دلیل اینکه ما بعضی اجسام را سیاه می‌بینیم این است که هیچ نوری از سطح آنها به چشم ما باز تابیده نمی‌شود. در حقیقت هیچ فوتون نوری از آنها به چشم ما تابیده نمی‌شود. بعضی از فوتوسایت‌ها اصلا از بار الکتریکی پر نمی‌شوند و مقدار نور محاسبه شده برای این پیکسل‌ها از میانگین پیکسل‌های همجوار (حتی اگر ضعیف هم باشند از پیکسل‌های دورتر) محاسبه می‌شوند. پیکسل‌های مرده یا همان پیکسل‌هایی که مورد استفاده قرار نگرفته‌اند در حقیقت همان فوتوسایت‌هایی هستند که هیچ نوری دریافت نمی‌کنند و عکس را خراب می‌کنند. باید بپذیریم که محیط اطراف ما دارای رنگ سیاه نیز هست!

اسلاید ۲۶: سیستم اپتیکال (Optical System ) قلب هر دوربینی ( چه دیجیتالی و چه فیلمی ) قسمت اپتیکی آن است. اکثر دوربینهای دیجیتال دو منظره یاب ( ویزور ) دارند، منظره یاب دیجیتال و اپتیکال . منظره یاب اپتیکال یک لنز پلاستیکی یا شیشه‏ای است که نمای سوژه را به صورت غیر الکترونیکی نشان می‏دهد و منظره ‏یاب دیجیتال، یک LCD است که تصویری از آنچه CCDها دریافت می‏کنند را به شما نشان می‏دهد .تفاوت منظره یاب دیجیتالی و اپتیکال : بسیاری از دوربینهای دیجیتال، غیر SLR هستند و شما آنچه را که CCDها می‏بینند از طریق منظره‏یاب اپتیکال نمی‏بینید. منظره‏یاب اپتیکال آنها، از سیستم ارزان قیمتی پیروی می‏کند. در این سیستم یک لنز مجزا به موازات لنز اصلی دوربین و نزدیک آن وجود دارد، که برای کادربندی ساخته شده است

اسلاید ۲۷: وقتی از فاصله‏های زیاد عکس می‏گیرید، نمایی که در لنز اصلی وجود دارد نسبت به چیزی که در لنز کوچک منظره‏یاب می‏بینید تفاوت چندانی ندارد، ولی هر چه فاصله کمتر شود، تفاوت تصویر آن دو نیز بیشتر می‏شود در این مشکل که مشکل توازی یا پارالکس نام دارد، هر چه فاصله سوژه از دوربین بیشتر باشد، نسبت اختلاف بین دو عکس کمتر می‏شود، و این همان خطای دیده منظره یاب است . یکی دیگر از مشکلات منظره‏یاب‏های اپتیکال موازی، این است که کادر آنها کوچکتر از نمایی است که عکسبرداری می‏شود. این مقدار Accuracy نامیده می‏شود که حدود ۸۰% است البته این مشکل در SLRها وجـود ندارد. LCD یا منظــره‏یاب دیجیتال بــرخلاف منظره‏یاب اپتیکـــال، دقیقـــاً آنـــــچه را که عکسبرداری خواهد شد نشان می‏دهد و در نتیجه بیشتر قابل اتکاست. در عین حال، استفاده از LCD مصرف باتری شما را بسیار افزایش می‏دهد و می‏توانید در مواقع لزوم با خاموش کردن آن و استفاده از منظره‏یاب اپتیک، مدت بیشتری از باتری خود استفاده کنید. در ضمن، دیدن LCD ها در نور زیاد بسیار مشکل است. و این نیز می‏تواند دلیل دیگری باشد که گاهی از منظره‏یاب اپتیک استفاده کنید .

اسلاید ۲۸: سیستم فوکوس خودکار چگونه کار می کند؟فوکوس خودکار یک سیستم ارزشمند است که امروزه در بیشتر دوربینها وجود دارد و باعث صرفه جویی در زمان می شود. در بیشتر حالات، این سیستم به بالاتر رفتن کیفیت عکسی که می گیریم کمک زیادی میکند.فوکوس خودکار چیست؟سیستم فوکوس خودکار یا اتوفوکوس (AF) را می توان سیستم فوکوس برقی نیز نامید، چون از یک کامپیوتر برای به حرکت در آوردن یک موتور مینیاتوری و فوکوس لنز برای شما بهره می‌گیرد. فوکوس عبارت است از حرکت به عقب و جلوی اجزائی از لنز تا زمانی که دقیق‌ترین تصویر ممکن بر روی فیلم یا سنسور تصویر تشکیل شود. باتوجه به فاصله سوژه از دوربین، لنز باید فاصله مشخصی از سنسور بگیرد تا بتواند تصویر واضحی را تشکیل دهد.در بیشتر دوربین‌های پیشرفته، فوکوس خودکار یکی از امکانات خودکاری است که برای راحتی گرفتن عکس در دوربین تعبیه شده است. کلا دو نوع سیستم فوکوس خودکار وجود دارد: سیستم فعال و غیر فعال، در بعضی از دوربین ها ممکن است از ترکیبی از این دو سیستم استفاده شود. بطور کلی، در گذشته، دوربینها بیشتر از سیستم فعال استفاده می‌کردند، در حالی که بیشتر دوربینهای SLR حرفه‌ای با لنزهای قابل تعویض و دوربین های اتوماتیک امروزی، از سیستم‌های غیر فعال بهره می‌گیرند.

اسلاید ۲۹: فوکوس خودکار فعالدر سال ۱۹۸۶، شرکت پولاروید از نوعی سیستم فاصله یاب صوتی (سونار)، مشابه آنچه که زیر دریایی‌ها در زیر دریا بکار می‌برند، برای یافتن فاصله دوربین تا سوژه استفاده نمود. این دوربین با یک پخش کننده، اصواتی با فرکانس بسیار بالا منتشر می کرد و سپس امواج برگشتی را دریافت می‌نمود. این مدلها که شامل Polaroid Spectra و SX-70 بودند، زمانی را که طول می‌کشید تا امواج برگشتی اولتراسونیک به دوربین برسند محاسبه نموده و فوکوس لنز را بر اساس آن تنظیم می کردند. استفاده از صوت، محدودیتهای خاص خود را داشت، مثلا اگر می‌خواستید از درون یک اتوبوس با پنجره‌های بسته عکس بگیرید، امواج صوتی بجای برخورد به سوژه مورد نظر در بیرون اتوبوس، به شیشه برخورد میکرد و باعث می شد تا دوربین در فوکوس اشتباه نماید. این سیستم پولاروید، یک سیستم کلاسیک فعال محسوب می‌شد. این سیستم بخاطر این فعال نامیده می‌شد که دوربین برای تشخیص فاصله جسم تا دوربین، چیزی را از خود انتشار می‌داد (در این مورد امواج صوتی).

اسلاید ۳۰: سیستم فوکوس خودکار فعال روی دوربین‌های امروزی، بجای امواج صوتی از سیگنالهای مادون قرمز استفاده می‌کنند که برای فوکوس روی اشیائی تا فاصله ۶ متر و کمی بیشتر تا دوربین عالی عمل می‌کند. سیستم‌های مادون قرمز از تکنولوژیهای مختلفی برای سنجش فاصلتا جسم استفاده می‌کنند. این سیستمها معمولا شامل تکنولوژیهایی نظیر:- مثلث بندی- سنجش میزان نور مادون قرمز برگشتی از جسم- زمانمی‌باشند.مثلا در این سند سیستمی شرح داده شده که یک پالس نور مادون قرمز را به سمت جسم می تاباند و از میزان نور بازتاب شده برای تشخیص فاصله جسم تا دوربین استفاده می‌کند. سیستم مادون قرمز، یک سیستم فعال محسوب می‌شود، چون دوربین همیشه باید یک انرژی نوری مادون قرمز نامرئی را هنگام فوکوس به بیرون دوربین بفرستد و آن را پس بگیرد.

اسلاید ۳۱: تصور دوربینی که مانند پولاروید بجای امواج صوتی امواج مادون قرمز به بیرون می‌فرستد، کار مشکلی نیست. جسم نور مادون قرمز را به سمت دوربین منعکس می‌کند و ریزپردازنده دوربین، زمان بین ارسال و دریافت امواج را محاسبه می‌کند. با این اختلاف زمانی و مشخص بودن سرعت امواج، می توان فاصله دقیق را محاسبه نمود و به موتورهای لنز، فرمان لازم برای حرکت به سمت جلو یا عقب، برای رسیدن به فاصله مورد نظر را صادر کرد. این فرآیند فوکوس تا زمانی که کاربر شاتر را تا نیمه فشرده نگاه داشته باشد مرتب تکرار می شود. تنها تفاوت بین این سیستم و سیستم اولتراسونیک در سرعت پالسها می‌باشد. امواج اولتراسونیک با سرعت صدها کیلومتر در ساعت حرکت میکنند (سرعت صوت)، در حالی که سرعت امواج مادون قرمز صدها هزار کیلومتر در ثانیه (سرعت نور) است.سنجش امواج مادون قرمز نیز دچار مشکلاتی می‌باشد. مثلا:- یک منبع امواج مادون قرمز از یک شعله آتش (مثلا شمع‌های کیک تولد) می‌تواند سنسور سیستم مادون قرمز را دچار سردرگمی نماید.- یک جسم سیاه می تواند شعاع نوری مادون قرمز را جذب نموده و برگشتی نداشته باشد.- شعاع مادون قرمز ممکن است توسط چیزی جلوتر از سوژه مورد نظر برگشت داده شود و به سوژه مورد نظر ما نرسد.یکمزیت سیستم فوکوس فعال ا

  راهنمای خرید:
  • همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
  • ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
  • در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.