پاورپوینت کامل یادگیری درخت تصمیم ۴۶ اسلاید در PowerPoint
توجه : این فایل به صورت فایل power point (پاور پوینت) ارائه میگردد
پاورپوینت کامل یادگیری درخت تصمیم ۴۶ اسلاید در PowerPoint دارای ۴۶ اسلاید می باشد و دارای تنظیمات کامل در PowerPoint می باشد و آماده ارائه یا چاپ است
شما با استفاده ازاین پاورپوینت میتوانید یک ارائه بسیارعالی و با شکوهی داشته باشید و همه حاضرین با اشتیاق به مطالب شما گوش خواهند داد.
لطفا نگران مطالب داخل پاورپوینت نباشید، مطالب داخل اسلاید ها بسیار ساده و قابل درک برای شما می باشد، ما عالی بودن این فایل رو تضمین می کنیم.
توجه : در صورت مشاهده بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل می باشد و در فایل اصلی پاورپوینت کامل یادگیری درخت تصمیم ۴۶ اسلاید در PowerPoint،به هیچ وجه بهم ریختگی وجود ندارد
بخشی از مطالب داخلی اسلاید ها
پاورپوینت کامل یادگیری درخت تصمیم ۴۶ اسلاید در PowerPoint
اسلاید ۴: نمایش درخت تصمیم درخت تصمیم درختی است که در آن نمونه ها را به نحوی دسته بندی میکند که از ریشه به سمت پائین رشد میکنند و در نهایت به گره های برگ میرسد:هر گره داخلی یاغیر برگ (non leaf) با یک ویژگی (attribute) مشخص میشود. این ویژگی سوالی را در رابطه با مثال ورودی مطرح میکند.درهر گره داخلی به تعداد جوابهای ممکن با این سوال شاخه (branch) وجود دارد که هر یک با مقدار آن جواب مشخص میشوند.برگهای این درخت با یک کلاس و یا یک دسته از جوابها مشخص میشوند.علت نامگذاری آن با درخت تصمیم این است که این درخت فرایند تصمیم گیری برای تعیین دسته یک مثال ورودی را نشان میدهد.
اسلاید ۵: مثالی از یک درخت تصمیممحل دردتبسرفهشکمباکتریگلوسکتهسینههیچکدامبلهخیرآپاندیسویروسیتببلهخیرآنفولانزاسرماخوردگیبلهخیرهیچکدامهر برگ این درخت یک کلاس یا دسته را مشخص میکند.یک مثال آموزشی در درخت تصمیم به این صورت دسته بندی میشود:از ریشه درخت شروع میشود.ویژگی معین شده توسط این گره تست می گردد.و سپس منطبق با ارزش ویژگی در مثال داده شده در طول شاخه ها حرکت رو به پائین انجام می دهد.این فرآیند برای گره های زیردرختان گره جدید تکرار می شود.
اسلاید ۶: کاربردهادرخت تصمیم در مسایلی کاربرد دارد که بتوان آنها را بصورتی مطرح نمود که پاسخ واحدی بصورت نام یک دسته یا کلاس ارائه دهند.برای مثال میتوان درخت تصمیمی ساخت که به این سوال پاسخ دهد: بیماری مریض کدام است؟ و یا درختی ساخت که به این سوال پاسخ دهد: آیا مریض به هپاتیت مبتلاست؟برای مسائلی مناسب است که مثالهای آموزشی بصورت زوج (مقدار-ویژگی) مشخص شده باشند.تابع هدف دارای خروجی با مقادیر گسسته باشد. مثلا هر مثال با بله و خیر تعیین شود.نیاز به توصیف گر فصلی (disjunctive) باشد.
اسلاید ۷: ویژگی های درخت تصمیمبرای تقریب توابع گسسته بکار می رود (classification)نسبت به نویز داده های ورودی مقاوم استبرای داده های با حجم بالا کاراست از این رو درData mining استفاده می شودمی توان درخت را بصورت قوانین if-then نمایش داد که قابل فهم برای استفاده استامکان ترکیب عطفی و فصلی فرضیه ها را می دهددر مواردی که مثالهای آموزشی که فاقد همه ویژگیها هستند نیز قابل استفاده است
اسلاید ۸: نحوه نمایش درخت تصمیم ارتباط مستقیمی بین درخت تصمیم ونمایش توابع منطقی وجود دارد.درواقع هردرخت تصمیم ترکیب فصلی گزاره های عطفی است مسیر از ریشه به برگ ترکیب عطفی (AND)از ویژگی ها را مشخص نموده و خوددرخت ترکیب فصلی(OR) این ترکیبات را میسازد.
اسلاید ۹: مثالترکیب عطفیOutlook=Sunny AND Wind=NormalNoNo
اسلاید ۱۰: مثالترکیب فصلیOR
اسلاید ۱۱: مثالتابع XOR XOR
اسلاید ۱۲: الگوریتم پاورپوینت کامل یادگیری درخت تصمیم ۴۶ اسلاید در PowerPointاغلب الگوریتم های پاورپوینت کامل یادگیری درخت تصمیم ۴۶ اسلاید در PowerPoint بر پایه یک عمل جستجوی حریصانه (greedy) بالا به پائین (top-down) در فضای درختهای موجود عمل میکنند. این الگوریتم پایه، Concept Learning System (CLS) نامیده می شود که در سال ۱۹۵۰ معرفی شده است. این الگوریتم توسط Ross Quilan در سال ۱۹۸۶ بصورت کاملتری تحت عنوان Inducing Decisition trees (ID3) مطرح گردید. بعدها الگوریتم کاملتر دیگری تحت عنوان C4.5 ارائه گردید که برخی نقائص ID3 را برطرف میکند.
اسلاید ۱۳: ایده اصلی ID3این ایده به Ocuum’s Razor مشهور است ومی گوید : ” دنیا ذاتا ساده است“ بنابراین از کوچکترین درخت تصمیم که با داده سازگار باشد انتظار می رود که مثالهای نادیده را به درستی دسته بندی کند.
اسلاید ۱۴: بایاس درخت تصمیم انتخاب درختهای کوچکتر بایاس درخت تصمیم بر این ایده است که درختهای کوچکتر بر درختهای بزرگتر ترجیح داده شود.
اسلاید ۱۵: سئوالاگر مسئله ما دارای m ویژگی باشد، ارتفاع درخت تصمیم چقدر خواهد بود؟جواب: درخت تصمیم دارای یک ریشه است که آن خود یک ویژگی است،در سئوال از آن ویژگی به پاسخی می رسیم که آن خود نیز، ویژگی است.پس حداکثر ارتفاع درخت m خواهد بود. ویژگی۱ ویژگی۲ ویژگیm دستهA دستهB
اسلاید ۱۶: الگوریتم ID3در این الگوریتم درخت تصمیم از بالا به پائین ساخته میشود. این الگوریتم با این سوال شروع میشود: کدام ویژگی باید در ریشه درخت مورد آزمایش قرار گیرد؟برای یافتن جواب از یک آزمون آماری استفاده میشود تا مشخص گردد هر کدام تا چه حد قادر است به تنهائی مثالهای آزمایشی را دسته بندی کند.با انتخاب این ویژگی، برای هر یک از مقادیر ممکن آن یک شاخه ایجاد شده و مثالهای آموزشی بر اساس ویژگی هر شاخه مرتب میشوند. سپس عملیات فوق برای مثالهای قرار گرفته در هر شاخه تکرار میشوند تا بهترین ویژگی برای گره بعدی انتخاب شو
- همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
- ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
- در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.
مهسا فایل |
سایت دانلود فایل 