فایل ورد کامل تخلیه محاسباتی خودکار در لبه متحرک برای برنامه های اینترنت اشیاء


در حال بارگذاری
10 جولای 2025
پاورپوینت
17870
3 بازدید
۷۹,۷۰۰ تومان
خرید

توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد

این مقاله، ترجمه شده یک مقاله مرجع و معتبر انگلیسی می باشد که به صورت بسیار عالی توسط متخصصین این رشته ترجمه شده است و به صورت فایل ورد (microsoft word) ارائه می گردد

متن داخلی مقاله بسیار عالی، پر محتوا و قابل درک می باشد و شما از استفاده ی آن بسیار لذت خواهید برد. ما عالی بودن این مقاله را تضمین می کنیم

فایل ورد این مقاله بسیار خوب تایپ شده و قابل کپی و ویرایش می باشد و تنظیمات آن نیز به صورت عالی انجام شده است؛ به همراه فایل ورد این مقاله یک فایل پاور پوینت نیز به شما ارئه خواهد شد که دارای یک قالب بسیار زیبا و تنظیمات نمایشی متعدد می باشد

توجه : در صورت مشاهده بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل می باشد و در فایل اصلی فایل ورد کامل تخلیه محاسباتی خودکار در لبه متحرک برای برنامه های اینترنت اشیاء،به هیچ وجه بهم ریختگی وجود ندارد

تعداد صفحات این فایل: ۲۵ صفحه


چکیده :

تخلیه محاسباتی یک توضیح برجسته برای دستگاههای سیار محدود به منابع است که انجام این فرایند مستلزم توانایی محاسباتی بالایی است. وجود ابر متحرک در پلتفرم تخلیه کاملاً شناخته شده است و بطور معمول در راه حلهای شبکه‌ای بسیار دور برای استفاده در محاسبه دستگاههای سیار محدود به منابع بکار می‌رود. به خاطر راه حل شبکه‌ای بسیار دور، دستگاه‌های کاربر، تأخیر شبکه‌ای بالایی را تجربه می‌کنند که بر برنامه‌های اینترنت اشیاء (IOT) متحرک در زمان واقعی، تأثیر منفی دارد. بنابراین، این مقاله یک راه حل شبکه‌ای بسیار نزدیک را برای تخلیه محاسباتی در مه/لبه متحرک پیشنهاد می‌دهد. تحرک، تنوع و توزیع جغرافیایی دستگاههای همراه از طریق چالشهای متعددی در تخلیه محاسباتی در مه/لبه متحرک. با این حال، برای پاسخگویی به تقاضای منابع محاسباتی در دستگاههای همراه بزرگ، یک چارچوب مدیریت خودکار مبتنی بر یادگیری عمیق Q مطرح می‌شود. کنترلگر لبه توزیع شده/ شبکه مه (FOC) که منابع مه/ لبه موجود برای مثال پردازش، حافظه، شبکه را پاکسازی می‌کند، سرویس محاسباتی مه/لبه را فعال می‌نماید. تصادفی بودن دسترس پذیری منابع و گزینه‌های بی شمار برای اختصاص آن منابع به محاسبه تخلیه، با مسئله مناسب برای مدلسازی از طریق روند تصمیم گیری Markov (MDF) و راه حل از طریق یادگیری تقویتی متناسب است. مدل پیشنهادی با توجه به نیازهای متغیر منابع و تحرک دستگاههای کاربر نهایی شبیه سازی شده است. روش پیشنهادی یادگیری عمیقQ، به طور قابل توجهی عملکرد تخلیه محاسباتی را از طریق به حداقل رساندن تأخیر در محاسبات سرویس، بهبود می‌بخشد. همچنین،کل نیرو با توجه تصمیم گیریهای مختلف تخلیه به منظور بررسیهای مقایسه‌ای مورد مطالعه قرار گرفته است که این رویکرد پیشنهادی را با توجه به راه حل‌های تخلیه محاسباتی پیشرفته، به عنوان یک رویکرد دارای مصرف بهینه انرژی نشان می‌دهد.

واژگان کلیدی: تخلیه محاسباتی | محاسبه خودکار | محاسبه مه/لبه متحرک | یادگیری عمیق Q

عنوان انگلیسی:

Autonomic computation offloading in mobile edge for IoT applications

~~en~~ writers :

Md Golam Rabiul Alam a, Mohammad Mehedi Hassan b,, Md: ZIa Uddin c, Ahmad Almogren b, Giancarlo Fortino

Computation offloading is a protuberant elucidation for the resource-constrained mobile devices to
accomplish the process demands high computation capability. The mobile cloud is the well-known
existing offloading platform, which usually far-end network solution, to leverage computation of the
resource-constrained mobile devices. Because of the far-end network solution, the user devices experience higher latency or network delay, which negatively affects the real-time mobile Internet of
things (IoT) applications. Therefore, this paper proposed near-end network solution of computation
offloading in mobile edge/fog. The mobility, heterogeneity and geographical distribution mobile devices
through several challenges in computation offloading in mobile edge/fog. However, for handling the
computation resource demand from the massive mobile devices, a deep Q-learning based autonomic
management framework is proposed. The distributed edge/fog network controller (FNC) scavenging the
available edge/fog resources i.e. processing, memory, network to enable edge/fog computation service.
The randomness in the availability of resources and numerous options for allocating those resources
for offloading computation fits the problem appropriate for modeling through Markov decision process
(MDP) and solution through reinforcement learning. The proposed model is simulated through MATLAB
considering oscillated resource demands and mobility of end user devices. The proposed autonomic deep
Q-learning based method significantly improves the performance of the computation offloading through
minimizing the latency of service computing. The total power consumption due to different offloading
decisions is also studied for comparative study purpose which shows the proposed approach as energy
efficient with respect to the state-of-the-art computation offloading solutions.

Keywords: Computation offloading | Autonomic computing | Mobile edge/fog computing | Deep Q- learning

$$en!!

  راهنمای خرید:
  • همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
  • ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
  • در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.