فایل ورد کامل هوش مصنوعی برای پیش بینی در مدیریت زنجیره تامین: مطالعه موردی میزان مصرف قند سفید در تایلند


در حال بارگذاری
10 جولای 2025
پاورپوینت
17870
2 بازدید
۷۹,۷۰۰ تومان
خرید

توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد

این مقاله، ترجمه شده یک مقاله مرجع و معتبر انگلیسی می باشد که به صورت بسیار عالی توسط متخصصین این رشته ترجمه شده است و به صورت فایل ورد (microsoft word) ارائه می گردد

متن داخلی مقاله بسیار عالی، پر محتوا و قابل درک می باشد و شما از استفاده ی آن بسیار لذت خواهید برد. ما عالی بودن این مقاله را تضمین می کنیم

فایل ورد این مقاله بسیار خوب تایپ شده و قابل کپی و ویرایش می باشد و تنظیمات آن نیز به صورت عالی انجام شده است؛ به همراه فایل ورد این مقاله یک فایل پاور پوینت نیز به شما ارئه خواهد شد که دارای یک قالب بسیار زیبا و تنظیمات نمایشی متعدد می باشد

توجه : در صورت مشاهده بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل می باشد و در فایل اصلی فایل ورد کامل هوش مصنوعی برای پیش بینی در مدیریت زنجیره تامین: مطالعه موردی میزان مصرف قند سفید در تایلند،به هیچ وجه بهم ریختگی وجود ندارد

تعداد صفحات این فایل: ۲۵ صفحه


چکیده :

این مقاله یک مدل مناسب برای پیش بینی روند میزان مصرف شکر سفید در تایلند با توجه به نوسانات نرخ مصرف امروزه ارائه می دهد. در این مقاله روی دو نوع مدل اصلی پیش بینی که مدل های رگرسیون و شبکه های عصبی هستند ، تمرکز خواهد شد. علاوه بر این ، عملکرد با استفاده از Root Mean Square Error (RMSE) و مقدار آماری TheilU ارزیابی می شود. پس از پردازش آزمایشات ، نتایج نشان می دهد که شبکه عصبی راجعه با حافظه کوتاه مدت (LSTM) با شرایط ترکیبی بین میزان مصرف موجود و سایر عوامل مرتبط مانند تأمین تولید ، میزان واردات ، صادرات و موجودی کالا بهترین عملکرد را برای پیش بینی فراهم می کند. همچنین تنظیم پارامترهای مدل مسئله مهمی است.

کلمات کلیدی: یادگیری ماشین | اینترنت فیزیکی | پیش بینی تقاضا | شبکه عصبی | رگرسیون

عنوان انگلیسی:

Artificial intelligence for forecasting in supply chain management: a case study of White Sugar consumption rate in Thailand

~~en~~ writers :

Anirut Kantasa-ard | Abdelghani Bekrar | Abdessamad Aitel cadi | Yves Sallez

This paper proposes an appropriate model to forecast the trend of white sugar consumption rate in Thailand due to the fluctuation of consumption rate nowadays. This paper will focus on two main forecasting model types, which are the regression models and neural network models. Moreover, the performance is evaluated by using Root Mean Square Error (RMSE) and Theil’U statistic value. After processing the experiments, the results demonstrate that Long Short-Term Memory (LSTM) recurrent neural network provides the best performance for the forecasting, with the condition of combination between the existing consumption rate and other relevant factors like production supply, import rate, export rate, and inventory stock. Also tuning the model’s parameters is an important issue.

Keywords: Machine Learning | Physical Internet | Demand Forecasting | Neural Network | Regression

$$en!!

  راهنمای خرید:
  • همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
  • ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
  • در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.