فایل ورد کامل DEGAN : شبکه های مولد متخاصم غیر متمرکز


در حال بارگذاری
10 جولای 2025
پاورپوینت
17870
2 بازدید
۷۹,۷۰۰ تومان
خرید

توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد

این مقاله، ترجمه شده یک مقاله مرجع و معتبر انگلیسی می باشد که به صورت بسیار عالی توسط متخصصین این رشته ترجمه شده است و به صورت فایل ورد (microsoft word) ارائه می گردد

متن داخلی مقاله بسیار عالی، پر محتوا و قابل درک می باشد و شما از استفاده ی آن بسیار لذت خواهید برد. ما عالی بودن این مقاله را تضمین می کنیم

فایل ورد این مقاله بسیار خوب تایپ شده و قابل کپی و ویرایش می باشد و تنظیمات آن نیز به صورت عالی انجام شده است؛ به همراه فایل ورد این مقاله یک فایل پاور پوینت نیز به شما ارئه خواهد شد که دارای یک قالب بسیار زیبا و تنظیمات نمایشی متعدد می باشد

توجه : در صورت مشاهده بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل می باشد و در فایل اصلی فایل ورد کامل DEGAN : شبکه های مولد متخاصم غیر متمرکز،به هیچ وجه بهم ریختگی وجود ندارد

تعداد صفحات این فایل: ۲۶ صفحه


چکیده :

در این مطالعه، یک چارچوب توزیع شده و غیرمتمرکز از شبکه های مولد متخاصم (GAN) بدون تبادل داده های آموزشی پیشنهاد شد. هر گره شامل مجموعه ی از داده محلی ، یک تفکیک کننده کننده و یک مولد است که فقط گرادیان ژنراتور آن با سایر گره ها به اشتراک گذاشته می شوند. در این مقاله ، تکنیک توزیع جدید معرفی می شود که در آن کارکنان مستقیماً با یکدیگر ارتباط برقرار می کنند و هیچ گره مرکزی وجود ندارد. نتایج تجربی ما در مجموعه داده های معیار ، عملکرد و دقت تقریباً یکسانی را در مقایسه با چارچوب های GAN متمرکز موجود نشان می دهد. چارچوب پیشنهادی به عدم یادگیری غیرمتمرکز برای GAN ها می پردازد.

کلمات کلیدی: یادگیری عمیق | شبکه های مولد متخاصم | یادگیری ماشین توزیع شده | معماری غیرمتمرکز

عنوان انگلیسی:

DEGAN: Decentralized generative adversarial networks

~~en~~ writers :

Mohammad Hashem Faezi, Shahriar Bijani, Ardeshir Dolati

We propose a distributed and decentralized Generative Adversarial Networks (GANs) framework without
the exchange of the training data. Each node contains local dataset, a discriminator and a generator, from
which only the generator gradients are shared with other nodes. In this paper, we introduce a novel, distributed technique in which workers communicate directly with each other, having no central nodes. Our
experimental results on the benchmark datasets demonstrate almost the same performance and accuracy
compared with existing centralized GAN frameworks. The proposed framework addresses the lack of
decentralized learning for GANs.

Keywords: Deep learning | Generative adversarial networks | Distributed machine learning | Decentralized architecture

$$en!!

  راهنمای خرید:
  • همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
  • ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
  • در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.