فایل ورد کامل ویژگیهای توجه عمیق برای جداسازی پروستات در فراوادرمانی
توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد
این مقاله، ترجمه شده یک مقاله مرجع و معتبر انگلیسی می باشد که به صورت بسیار عالی توسط متخصصین این رشته ترجمه شده است و به صورت فایل ورد (microsoft word) ارائه می گردد
متن داخلی مقاله بسیار عالی، پر محتوا و قابل درک می باشد و شما از استفاده ی آن بسیار لذت خواهید برد. ما عالی بودن این مقاله را تضمین می کنیم
فایل ورد این مقاله بسیار خوب تایپ شده و قابل کپی و ویرایش می باشد و تنظیمات آن نیز به صورت عالی انجام شده است؛ به همراه فایل ورد این مقاله یک فایل پاور پوینت نیز به شما ارئه خواهد شد که دارای یک قالب بسیار زیبا و تنظیمات نمایشی متعدد می باشد
توجه : در صورت مشاهده بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل می باشد و در فایل اصلی فایل ورد کامل ویژگیهای توجه عمیق برای جداسازی پروستات در فراوادرمانی،به هیچ وجه بهم ریختگی وجود ندارد
تعداد صفحات این فایل: ۱۸ صفحه
چکیده :
جداسازی خودکار پروستات در فراوادرمانی ترانسرکتال (TRUS) برای بافتبرداری تصاویر هدایتشدهی پروستات و برنامهریزی درمان بسیار حائر اهمیت میباشد. همچنین بهدلیل مرز مبهم و توزیع شدت غیرهمگن پروستات در TRUS، توسعه دادن اینگونه راهحلهای خودکار هنوز چالشبرانگیز باقیمانده است. در این پژوهش، یک شبکهی عصبی عمیق جدید که با ماژولهای ویژگی توجه عمیق (DAF) مجهز شده است، برای جداسازی بهتر پروستات در TRUS با استفاده از استخراج کردن اطلاعات مکمل کدگذاریشده در لایههای مختلف شبکهی عصبی پیچشی (CNN) توسعه داده شده است. همچنین DAF متعلق به ما جهت انتخاب قدرت نفوذ ویژگیهای چندگانهی ادغامشده از طریق لایههای مختلف برای تصحیح کردن ویژگیهای هر لایهی منحصربهفرد، متوقف کردن سروصدای غیرپروستات در لایههای کمعمق CNN و افزایش دادن تعداد جزئیات پروستات درون ویژگیهای لایههای عمیق از مکانیزم توجه استفاده میکند. ما تأثیر شبکهی پیشنهادی را بر روی تصاویر چالشبرانگیز TRUS پروستات و همچنین نتایج تجربی ارزیابی میکنیم تا عملکرد بهتر روشهای نوین را بهوسیلهی یک تفاوت مزیت بزرگ نشان دهیم.
عنوان انگلیسی:
Deep Attentional Features for Prostate Segmentation in Ultrasound
~~en~~ writers :
Yi Wang1,2, Zijun Deng3, Xiaowei Hu4, Lei Zhu4,5(B), Xin Yang4, Xuemiao Xu3, Pheng-Ann Heng4, and Dong Ni1,2
Automatic prostate segmentation in transrectal ultrasound
(TRUS) is of essential importance for image-guided prostate biopsy
and treatment planning. However, developing such automatic solutions
remains very challenging due to the ambiguous boundary and inhomogeneous intensity distribution of the prostate in TRUS. This paper develops a novel deep neural network equipped with deep attentional feature (DAF) modules for better prostate segmentation in TRUS by fully
exploiting the complementary information encoded in different layers of
the convolutional neural network (CNN). Our DAF utilizes the attention
mechanism to selectively leverage the multi-level features integrated from
different layers to refine the features at each individual layer, suppressing
the non-prostate noise at shallow layers of the CNN and increasing more
prostate details into features at deep layers. We evaluate the efficacy of
the proposed network on challenging prostate TRUS images, and the
experimental results demonstrate that our network outperforms stateof-the-art methods by a large margin.
$$en!!
- همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
- ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
- در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.
مهسا فایل |
سایت دانلود فایل 