فایل ورد کامل مشتقات ثابت دو بعدی تفکیک پذیر صریح برای تشخیص جسم


در حال بارگذاری
10 جولای 2025
پاورپوینت
17870
6 بازدید
۷۹,۷۰۰ تومان
خرید

توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد

این مقاله، ترجمه شده یک مقاله مرجع و معتبر انگلیسی می باشد که به صورت بسیار عالی توسط متخصصین این رشته ترجمه شده است و به صورت فایل ورد (microsoft word) ارائه می گردد

متن داخلی مقاله بسیار عالی، پر محتوا و قابل درک می باشد و شما از استفاده ی آن بسیار لذت خواهید برد. ما عالی بودن این مقاله را تضمین می کنیم

فایل ورد این مقاله بسیار خوب تایپ شده و قابل کپی و ویرایش می باشد و تنظیمات آن نیز به صورت عالی انجام شده است؛ به همراه فایل ورد این مقاله یک فایل پاور پوینت نیز به شما ارئه خواهد شد که دارای یک قالب بسیار زیبا و تنظیمات نمایشی متعدد می باشد

توجه : در صورت مشاهده بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل می باشد و در فایل اصلی فایل ورد کامل مشتقات ثابت دو بعدی تفکیک پذیر صریح برای تشخیص جسم،به هیچ وجه بهم ریختگی وجود ندارد

تعداد صفحات این فایل: ۲۵ صفحه


چکیده :

مشتقات ثابت تصویر به طور گسترده ای در زمینه های تشخیص الگو و دید رایانه مورد استفاده قرار گرفته اند، زیرا آنها قادر به ارائه الگوی ویژگی های مستقل تبدیل هندسی هستند. در حال حاضر، ثابت های تفکیک پذیر و مشتقات آنها به دلیل توانایی در ترکیب ویژگی های اساسی ثابت های متعامد مختلف، بیشتر مورد توجه قرار گرفته است. با این حال، بسیاری از مشتق های ثابت تفکیک پذیر موجود، به طور غیرمستقیم از مشتق های هندسی و بر اساس رابطه چندجمله ای متعامد و هندسی، به دست می آیند. بنابراین، در این مقاله، رویکرد مستقیمی برای ساخت مجموعه ای از مشتق های ثابت تفکیک پذیر گسسته Chebichef-Krawtchouk پیشنهاد شد که در آن به طور همزمان مشتق برای چرخش، مقیاس پذیری و تبدیل انتقال فراهم می شود و مبتنی بر فرم صریح چند جمله ای Tchebichef و Krawtchouk است. در نتیجه، نتایج تجربی و نظری اثربخشی روش پیشنهادی اثبات شد و ارجحیت آنها در طبقه بندی تصویر و شناخت الگو در مقایسه با روش های موجود نشان داده شد.

کلیدواژه: مشتقات غیرمستقیم | روش صریح | ثابت تفکیک پذیر | چندجمله ای Krawtchouk | چندجمله ای Tchebichef | تشخیص الگو

عنوان انگلیسی:

Explicit Separable two dimensional Moment Invariants for object recognition

~~en~~ writers :

Rachid Benouini, Imad Batioua, Ilham Elouariachi, Khalid Zenkouar, Arsalane Zarghili

Image moment invariants has been widely used in the fields of pattern recognition and computer vision, since they are able to represent pattern features independently of geometric transformations. Currently, Separable Moments and their invariants are gaining
more interest, due to their capability for combining the basic properties of different orthogonal moments. However, most of the
existing separable moment invariants are derived indirectly from the geometric invariants, based on the relationship orthogonal
polynomials and the geometric basis. Therefore, in this paper, we propose a direct approach to construct a set of discrete separable
Tchebichef-Krawtchouk Moment Invariants which are simultaneously invariant to Rotation, Scaling and Translation transformation, based on the explicit form of the Tchebichef and Krawtchouk polynomials. Consequently, the experimental and theoretical
results validate the effectiveness of the proposed method and show their superiority in image classification and pattern recognition
in comparison with the existing methods.

Keywords: Moment Invariants | Explicite Method | Separable Moments | Krawtchouk Polynomials | Tchebichef Polynomials | Pattern Recognition

$$en!!

  راهنمای خرید:
  • همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
  • ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
  • در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.