فایل ورد کامل بررسی عملکرد شبکه عصبی دارای تغذیه رو به جلو برای حریم هم ارز با وسایل باسیم/ پروتکل های دسترسی محافظت شده با وای فای


در حال بارگذاری
10 جولای 2025
پاورپوینت
17870
4 بازدید
۷۹,۷۰۰ تومان
خرید

توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد

این مقاله، ترجمه شده یک مقاله مرجع و معتبر انگلیسی می باشد که به صورت بسیار عالی توسط متخصصین این رشته ترجمه شده است و به صورت فایل ورد (microsoft word) ارائه می گردد

متن داخلی مقاله بسیار عالی، پر محتوا و قابل درک می باشد و شما از استفاده ی آن بسیار لذت خواهید برد. ما عالی بودن این مقاله را تضمین می کنیم

فایل ورد این مقاله بسیار خوب تایپ شده و قابل کپی و ویرایش می باشد و تنظیمات آن نیز به صورت عالی انجام شده است؛ به همراه فایل ورد این مقاله یک فایل پاور پوینت نیز به شما ارئه خواهد شد که دارای یک قالب بسیار زیبا و تنظیمات نمایشی متعدد می باشد

توجه : در صورت مشاهده بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل می باشد و در فایل اصلی فایل ورد کامل بررسی عملکرد شبکه عصبی دارای تغذیه رو به جلو برای حریم هم ارز با وسایل باسیم/ پروتکل های دسترسی محافظت شده با وای فای،به هیچ وجه بهم ریختگی وجود ندارد

تعداد صفحات این فایل: ۲۴ صفحه


چکیده :

هدف: میلیون ها نفر بدون اینکه جنبه های فناوری بی سیم را بدانند، از وسایل بی سیم در زندگی کارهای روزانه خود استفاده می کنند. هدف تحقیق ما ارتقای اجرای پروتکل های وسایل بی سیم ازطریق بررسی رفتار آنها در شبکه عصبی دارای تغذیه رو به جلو می باشد که به صورت گسترده استفاده می شوند. اساسا” شبکه عصبی یک شبکه رشته ای چند لایه ای می باشد. این شبکه، داده های ثبت شده را یکی یکی پردازش می کند و ازطریق مقایسه خروجی به دست آمده با خروجی واقعی، به اطلاعات دست می یابد. رشته های عصبی دارای لایه پنهان یک نقش اصلی در عملکرد نشر و انتشار رو به عقب دارد. فرآیند تعیین تعداد رشته های عصبی دارای لایه پنهان هنوزهم مبهم است. این کار تحقیقی روی ارزیابی عملکرد رشته های عصبی دارای لایه پنهان برای پروتکل های WEP (حریم هم ارز با وسایل با سیم) و WPA (دسترسی محافظت شده با وای فای) متمرکز می باشد.

روشها/ تحلیل آماری: برای این کار، سه معماری شبکه ای جهت انجام تحلیل، انتخاب شده است. این کار تحقیقی با استفاده از الگوریتم انتشار رو به عقب در جعبه ابزار شبکه عصبی روی داده های به دست آمده با استفاده از ابزار وایرشارک، انجام می شود.

یافته ها: رفتار شبکه های عصبی غیر پنهان ازطریق روش شبیه سازی بررسی می شود. عملکرد شبکه نیز با کمک داده های تاریخی و خطای مربع میانگین (MSE) تشخیص داده می شود. عملکرد شبکه عصبی بررسی می شود و نتایج نشان می دهند که شبکه های عصبی دارای لایه پنهان بر کارکرد شبکه اثر می گذارند.

بهبود: ما دوست داریم که با پارامتر و یادگیری شبکه عصبی کار کنیم تا به بهترین نتایج دست یابیم.

کلیدواژه ها: انتشار رو به عقب | شبکه عصبی دارای تغذیه رو به جلو | لایه پنهان | خطای مربع میانگین | دسترسی محافظت شده با وای فای | حریم هم ارز با وسایل با سیم

عنوان انگلیسی:

Performance Evaluation of Feed Forward Neural Network for Wired Equivalent Privacy/Wi-Fi Protected Access Protocols

~~en~~ writers :

Menal and Sumeet Gill

Objective: Millions of people use wireless devices in their day to day diligences without knowing the security facets of Wireless Technology. The aim of our research is to enhance the execution of widely used wireless devices’s
protocols by examining their behavior with Feed Forward Neural Network. Fundamentally, Neural Network is a multilayer perceptron network. It processes the records one at a time and “learn” by comparing the obtained output with
the actual output. Hidden layer neurons play a cardinal role in the performance of Back Propagation. The process of determining the number of hidden layer neurons is still obscure. The work is focused on performance evaluation of the
hidden layer neurons for WEP (Wired Equivalent Privacy) and WPA (Wi-Fi Protected Access) protocols.

Methods/
Statistical Analysis: For this work, three network architectures have been picked out to perform the analysis. The research work is carried out by using Back Propagation Algorithm in Neural Network Toolbox on the data captured by
using Wireshark tool.

Findings: The behavior of various unlike hidden neurons is evaluated through simulation technique. Network performance is also diagnosed with the help of epochs and Mean Square Error (MSE). The performance
of Neural Network is evaluated and outcomes indicate that hidden layer neurons affect the functioning of the network.

Improvement: We would like to work with the parameter and learning of the Neural Network to achieve best results.

Keywords: Back Propagation | Feed Forward Neural Network | Hidden Layer | Mean Square Error | Wi-Fi Protected Access | Wired Equivalent Privacy

$$en!!

  راهنمای خرید:
  • همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
  • ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
  • در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.