فایل ورد کامل قطعه‌بندی تومورهای مغزی با استفاده از شبکه‌های عصبی کانولوشن در تصاویر ام آر آی


در حال بارگذاری
10 جولای 2025
پاورپوینت
17870
4 بازدید
۷۹,۷۰۰ تومان
خرید

توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد

این مقاله، ترجمه شده یک مقاله مرجع و معتبر انگلیسی می باشد که به صورت بسیار عالی توسط متخصصین این رشته ترجمه شده است و به صورت فایل ورد (microsoft word) ارائه می گردد

متن داخلی مقاله بسیار عالی، پر محتوا و قابل درک می باشد و شما از استفاده ی آن بسیار لذت خواهید برد. ما عالی بودن این مقاله را تضمین می کنیم

فایل ورد این مقاله بسیار خوب تایپ شده و قابل کپی و ویرایش می باشد و تنظیمات آن نیز به صورت عالی انجام شده است؛ به همراه فایل ورد این مقاله یک فایل پاور پوینت نیز به شما ارئه خواهد شد که دارای یک قالب بسیار زیبا و تنظیمات نمایشی متعدد می باشد

توجه : در صورت مشاهده بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل می باشد و در فایل اصلی فایل ورد کامل قطعه‌بندی تومورهای مغزی با استفاده از شبکه‌های عصبی کانولوشن در تصاویر ام آر آی،به هیچ وجه بهم ریختگی وجود ندارد

تعداد صفحات این فایل: ۴۵ صفحه


چکیده :

در بین تومور‌های مغزی، غده‌ها شایع‌ترین و تهاجمی‌ترین نوع آن ها هستند که در بالاترین درجات به کاهش زیاد متوسط عمر منجر می‌شوند. بدین سبب، برنامه‌ریزی درمانی، مرحله مهمی در بهبود کیفیت زندگی بیماران انکولوژی به شمار می‌رود. تصویربرداری با تشدید مغناطیس (ام آر آی) پرکابردترین روش تصویربرداری برای ارزیابی این‌گونه تومور‌ها می‌باشد، با اینهمه حجم زیاد داده‌های تولیدی ام آر آی مانع قطعه‌بندی دستی در زمان مقتضی شده و استفاده از اندازه‌گیری‌های کمی دقیق در کار بالینی را محدود می‌کند. با این حال، تغییرپذیری زیاد ساختاری و فضایی میان تومورهای مغزی مسئله قطعه بندی خودکار را با مشکل مواجه می‌کند. در این مقاله، روش قطعه‌بندی خودکار مبتنی بر شبکه‌های عصبی کانولوشن (CNN) جهت کاوش هسته‌های کوچک ۳ × ۳ ارائه می‌دهیم. استفاده از هسته‌های کوچک علاوه بر تأثیرگذاری مثبت در برابر تطابق بیش ار حد، امکان طراحی یک ساختار عمیق‌تر را فراهم نموده و اوزان کمتری را در شبکه نشان می‌دهد. ما هم‌چنین استفاده از عادی‌سازی شدت را با وجود عمومیت آن در روش‌های قطعه‌بندی مبتنی بر شبکه عصبی کانولوشن به عنوان مرحله پیش‌پردازش بررسی نموده‌ و اثبات کردیم که به همراه افزایش داده‌ها می‌تواند در قطعه‌بندی تصاویر ام آر آی تومورهای مغزی بسیار کارآمد باشد. طرح پیشنهادی ما مورد تأیید پایگاه داده‌ای Challenge BRATS 2013 جهت قطعه‌بندی تومورهای مغزی قرار گرفت و همزمان در نواحی کامل، هسته و افزایشی در متریک‌های ضریب شباهت دایس (۸۸/۰، ۸۳/۰، ۷۷/۰) مقام اول را در پایگاه داد‌ه‌ای Challenge بدست آورد. این طرح در پایگاه ارزیابی برخط نیز در کل مقام اول را کسب کرد. ما هم‌چنین با همان مدل در پایگاه Challenge در محل BRATS 2015 شرکت کردیم و توانستیم به کمک متریک ضریب شباهت دایس با مقادیر ۷۸/۰، ۶۵/۰ و ۷۵/۰ به ترتیب در نواحی کامل، هسته و افزایشی به مقام دوم دست‌ یابیم.

عبارات شاخص: تومور مغزی | قطعه‌بندی تومور مغزی | شبکه‌های عصبی کانولوشن | یادگیری عمیق | غده | تصویربرداری با تشدید مغناطیس

عنوان انگلیسی:

Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images

~~en~~ writers :

Sérgio Pereira, Adriano Pinto, Victor Alves, and Carlos A. Silva

Among brain tumors, gliomas are the most common
and aggressive, leading to a very short life expectancy in their
highest grade. Thus, treatment planning is a key stage to improve
the quality of life of oncological patients. Magnetic resonance
imaging (MRI) is a widely used imaging technique to assess
these tumors, but the large amount of data produced by MRI
prevents manual segmentation in a reasonable time, limiting the
use of precise quantitative measurements in the clinical practice.
So, automatic and reliable segmentation methods are required;
however, the large spatial and structural variability among brain
tumors make automatic segmentation a challenging problem. In
this paper, we propose an automatic segmentation method based
on Convolutional Neural Networks (CNN), exploring small 3 3
kernels. The use of small kernels allows designing a deeper architecture, besides having a positive effect against overfitting, given
the fewer number of weights in the network. We also investigated
the use of intensity normalization as a pre-processing step, which
though not common in CNN-based segmentation methods, proved
together with data augmentation to be very effective for brain
tumor segmentation in MRI images. Our proposal was validated in
the Brain Tumor Segmentation Challenge 2013 database (BRATS
۲۰۱۳), obtaining simultaneously the first position for the complete,
core, and enhancing regions in Dice Similarity Coefficient metric
(۰.۸۸, ۰.۸۳, ۰.۷۷) for the Challenge data set. Also, it obtained the
overall first position by the online evaluation platform. We also
participated in the on-site BRATS 2015 Challenge using the same
model, obtaining the second place, with Dice Similarity Coefficient
metric of 0.78, 0.65, and 0.75 for the complete, core, and enhancing
regions, respectively.

Index Terms: Brain tumor | brain tumor segmentation | convolutional neural networks | deep learning | glioma | magnetic resonance imaging.

$$en!!

  راهنمای خرید:
  • همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
  • ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
  • در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.