فایل ورد کامل ترکیب دانش تخصصی با فراگیری ماشین براساس آموزش فازی


در حال بارگذاری
10 جولای 2025
پاورپوینت
17870
3 بازدید
۷۹,۷۰۰ تومان
خرید

توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد

این مقاله، ترجمه شده یک مقاله مرجع و معتبر انگلیسی می باشد که به صورت بسیار عالی توسط متخصصین این رشته ترجمه شده است و به صورت فایل ورد (microsoft word) ارائه می گردد

متن داخلی مقاله بسیار عالی، پر محتوا و قابل درک می باشد و شما از استفاده ی آن بسیار لذت خواهید برد. ما عالی بودن این مقاله را تضمین می کنیم

فایل ورد این مقاله بسیار خوب تایپ شده و قابل کپی و ویرایش می باشد و تنظیمات آن نیز به صورت عالی انجام شده است؛ به همراه فایل ورد این مقاله یک فایل پاور پوینت نیز به شما ارئه خواهد شد که دارای یک قالب بسیار زیبا و تنظیمات نمایشی متعدد می باشد

توجه : در صورت مشاهده بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل می باشد و در فایل اصلی فایل ورد کامل ترکیب دانش تخصصی با فراگیری ماشین براساس آموزش فازی،به هیچ وجه بهم ریختگی وجود ندارد

تعداد صفحات این فایل: ۲۴ صفحه


چکیده :

در این مقاله یک رویکرد آموزش فازی مبتنی بر تنظیم غیر خطی که تلاش آن به منظور ممانعت در طول آموزش است، معرفی می کند. ایده اصلی به منظور محدود کردن آموزش بدین منظور است که دانش تخصصی مبنا برای ساخت مدلی که هنوز هم قابل مشاهده است، بکار برده شود. اجرای این ایده با یک روش جدید تنظیم غیر خطی که برای هر نوع مجموعه داده ی آموزشی قابل اجراست، صورت گرفت. این روش با استفاده از مجموعه داده ی عملکرد محصول بزرگ (> 4500 محصول زراعی) برای چغندرقند که در مزارع کشاورزی در طی یک دوره ۱۴ ساله (۱۹۷۶-۱۹۸۹) در شرق آلمان جمع آوری شده، اثبات است. این نرم افزار در SAMT2، نرم افزار رایگان و منبع گسترده، با استفاده از زبان برنامه نویسی پایتون اجرا گردید.

کلید واژه ها: مدل سازی فازی | دانش تخصصی | فراگیری ماشین | تنظیم غیر خطی | بهینه سازی | مدل سازی عملکرد

عنوان انگلیسی:

Combining expert knowledge with machine learning on the basis of fuzzy training

~~en~~ writers :

Ralf Wieland, Wilfried Mirschel

The paper introduces a fuzzy training approach based on nonlinear regularization in an effort to avoid over
training. The main idea is to restrict training so that the basic expert knowledge used to build the model
is still visible. This is implemented by a new nonlinear regularization approach which can be applied to
any kind of training data set. The approach is demonstrated using a large crop yield data set (>4500 field
records) for sugar beet collected in agricultural farms over a 14-year period (1976–۱۹۸۹) in East Germany.
The software is implemented in SAMT2, free and open source software, using the Python programming
language.

Keywords: Fuzzy modeling | Expert knowledge | Machine learning | Nonlinear regularization | Optimization | Yield modeling

$$en!!

  راهنمای خرید:
  • همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
  • ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
  • در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.