فایل ورد کامل ترکیب برنامه‌نویسی شبکه ژنتیک و مسئله کوله پشتی برای خوشه‌بندی رکورد پشتیبان بر روی پایگاه داده‌های توزیع شده


در حال بارگذاری
10 جولای 2025
پاورپوینت
17870
2 بازدید
۷۹,۷۰۰ تومان
خرید

توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد

این مقاله، ترجمه شده یک مقاله مرجع و معتبر انگلیسی می باشد که به صورت بسیار عالی توسط متخصصین این رشته ترجمه شده است و به صورت فایل ورد (microsoft word) ارائه می گردد

متن داخلی مقاله بسیار عالی، پر محتوا و قابل درک می باشد و شما از استفاده ی آن بسیار لذت خواهید برد. ما عالی بودن این مقاله را تضمین می کنیم

فایل ورد این مقاله بسیار خوب تایپ شده و قابل کپی و ویرایش می باشد و تنظیمات آن نیز به صورت عالی انجام شده است؛ به همراه فایل ورد این مقاله یک فایل پاور پوینت نیز به شما ارئه خواهد شد که دارای یک قالب بسیار زیبا و تنظیمات نمایشی متعدد می باشد

توجه : در صورت مشاهده بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل می باشد و در فایل اصلی فایل ورد کامل ترکیب برنامه‌نویسی شبکه ژنتیک و مسئله کوله پشتی برای خوشه‌بندی رکورد پشتیبان بر روی پایگاه داده‌های توزیع شده،به هیچ وجه بهم ریختگی وجود ندارد

تعداد صفحات این فایل: ۳۸ صفحه


چکیده :

این تحقیق شامل پیاده سازی برنامه ‌نویسی شبکه ژنتیک (GNP) و برنامه‌نویسی پویای استاندارد برای حل مسئله کوله پشتی (KP) به عنوان سیستم پشتیبان تصمیم برای خوشه‌بندی رکوردها در پایگاه داده توزیع شده است. مسئله تخصیص قطعه۱ با توجه به محدودیت ظرفیت ذخیره‌سازی پیش‌زمینه‌ برای روش پیشنهادی است. مسئله ظرفیت ذخیره سازی برای توزیع مجموعه قطعه‌ها در چند سایت (خوشه‌ها) است. مجموع قطعه‌ها در هر سایت نباید از ظرفیت سایت تجاوز کند، در حالی که فرآیند توزیع باید ارتباط (تشابه) بین قطعه‌ها را در هر سایت حفظ کند. هدف توزیع داده بزرگ برای سایت‌های اصلی با مقدار محدود شده ظرفیت با بررسی تشابه داده توزیع شده در هر سایت است. برای حل این مسئله، GNP برای استخراج قوانین از داده بزرگ با بررسی ویژگی‌های (دامنه مقادیر) هر صفت در پایگاه داده استفاده می‌شود. روش پیشنهادی، روش تصادفی جزئی استخراج قوانین را در GNP برای کشف الگوی تکراری فراوان‌ترین الگوها در پایگاه داده برای بهبود الگوریتم خوشه‌بندی، به خصوص در مسائل با داده بزرگ، ارائه داده است. مفهوم KP برای مسئله ظرفیت ذخیره سازی بکار می‌رود و برنامه نویسی پویای استاندارد برای توزیع قوانین برای هر سایت با بررسی تشابه (ارزش) و حجم داده (وزن) مربوط به هر قانون برای تطبیق ظرفیت سایت استفاده می‌شود. از نتایج شبیه‌سازی، بدیهی است که روش پیشنهادی مزایایی را برروی الگوریتم خوشه‌بندی معمولی نشان می‌دهد، بنابراین، روش پیشنهادی روش خوشه‌بندی جدیدی را یا مسئله ظرفیت ذخیره سازی اضافی ارائه می‌دهد.

کلمات کلیدی : برنامه‌نویسی شبکه ژنتیک | خوشه‌بندی پایگاه داده | مسئله کوله پشتی | خوشه‌بندی رکورد

عنوان انگلیسی:

Combination of genetic network programming and knapsack problem to support record clustering on distributed databases

~~en~~ writers :

Wirarama Wedashwara, Shingo Mabu, Masanao Obayashi, Takashi Kuremoto

This research involves implementation of genetic network programming (GNP) and standard dynamic programming to solve the knapsack problem (KP) as a decision support system for record clustering in distributed databases. Fragment allocation with storage capacity limitation problem is a background of the
proposed method. The problem of storage capacity is to distribute sets of fragments into several sites (clusters). Total amount of fragments in each site must not exceed the capacity of site, while the distribution
process must keep the relation (similarity) between fragments within each site. The objective is to distribute
big data to certain sites with the limited amount of capacities by considering the similarity of distributed
data in each site. To solve this problem, GNP is used to extract rules from big data by considering characteristics (value ranges) of each attribute in a dataset. The proposed method also provides partial random
rule extraction method in GNP to discover frequent patterns in a database for improving the clustering
algorithm, especially for large data problems. The concept of KP is applied to the storage capacity problem and standard dynamic programming is used to distribute rules to each site by considering similarity
(value) and data amount (weight) related to each rule to match the site capacities. From the simulation results, it is clarified that the proposed method shows some advantages over the conventional clustering algorithms, therefore, the proposed method provides a new clustering method with an additional storage capacity
problem.

Keywords: Genetic network programming | Database clustering | Knapsack problem | Record clustering

$$en!!

  راهنمای خرید:
  • همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
  • ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
  • در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.