فایل ورد کامل استفاده مجدد از پساب های کشاورزی با استفاده از نانوفیلتراسیون در عراق


در حال بارگذاری
10 جولای 2025
پاورپوینت
17870
3 بازدید
۷۹,۷۰۰ تومان
خرید

توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد

این مقاله، ترجمه شده یک مقاله مرجع و معتبر انگلیسی می باشد که به صورت بسیار عالی توسط متخصصین این رشته ترجمه شده است و به صورت فایل ورد (microsoft word) ارائه می گردد

متن داخلی مقاله بسیار عالی، پر محتوا و قابل درک می باشد و شما از استفاده ی آن بسیار لذت خواهید برد. ما عالی بودن این مقاله را تضمین می کنیم

فایل ورد این مقاله بسیار خوب تایپ شده و قابل کپی و ویرایش می باشد و تنظیمات آن نیز به صورت عالی انجام شده است؛ به همراه فایل ورد این مقاله یک فایل پاور پوینت نیز به شما ارئه خواهد شد که دارای یک قالب بسیار زیبا و تنظیمات نمایشی متعدد می باشد

توجه : در صورت مشاهده بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل می باشد و در فایل اصلی فایل ورد کامل استفاده مجدد از پساب های کشاورزی با استفاده از نانوفیلتراسیون در عراق،به هیچ وجه بهم ریختگی وجود ندارد

تعداد صفحات این فایل: ۱۸ صفحه


بخشی از ترجمه :

مطالعات معیار و پایلوت برای ارزیابی امکان سنجی شیرین سازی پساب توسط غشای NF انجام شدند. نتیجه نهایی کار به شکل ذیل است:
۱- آزمایشات جریان پیوسته و کوزه ای صفحه صاف نشان داد که ضد رسوب ۶ پی پی ام برای اجتناب از رسوب بلور بر روی ممبران NF برای شیرین سازی آب کافی است.
۲- یک همبستگی تجربی بر روی معادله با توان پایین برای توصیف رابطه بین دوز مورد نیاز ضد رسوب و غلظت آب زهکشی با ضریب تعیین ۰۹۹۸ ایجاد شد.
۳- نتایج نشان داد که میزان حذف و دفع با افزایش غلظت نمک کاهش یافت و دفع منیزیم، کلسیم و سدیم در دامنه غلظت های مورد انتظار در محل نشان داد که غلظت های تغذیه ای بالا موجب کاهش سرعت دفع می شود ولی اثر کم تری بر دفع منیزیم و کلسیم دارد. مقادیر دفع بالا برای هر دو کاتیون و آنیون نشان داد که استفاده از ممبران NF در تصفیه ADW از کانال زهکشی عراق خوب است.
۴- آب تصفیه شده از آب زهکشی یا پساب برای آبیاری در صورتی خوب است که از طبقه بندی ویلکوکس استفاده شود.

عنوان انگلیسی:Reuse of Iraqi Agricultural Drainage Water Using Nanofiltration~~en~~

. INTRODUCTION Many agricultural parts of the word, especially in arid and semiarid regions, suffer from adverse effects of irrigation, such as water logging and soil salinity. Concurrently, fresh water resources continue to dwindle either from excessive use or from deterioration of water quality due to contamination [1]. The agricultural sector is the largest user, and consumer, of water in Iraq, with its share exceeding 75% of the total gross demand for water [2]. On a consumptive use basis (the water fraction that evapotranspires during use), the share of irrigation water is even higher at more than 80% [2]. Future increase in overall irrigation supply will depend on changes in the (priorities) demands for the municipal and industrial sectors, development of new groundwater resources and measures to reduce the outflow (terminal drainage) from the Euphrates-Tigris system. Agricultural drainage water (ADW) is a complex mixture of dissolved and suspended organic and inorganic components as well as a wide variety of microorganisms [3]. The feasibility of membranes for drainage water reclamation was first demonstrated in 1971 at Firebaugh, California ([4, 5]). Since then, serious consideration has been given to membrane technology for reclamation and reuse of agricultural drainage water in the one of the largest agricultural centers of the word, the San Joaquin Valley, CA [6]. Interruption of drainage has created a severe hardship for the farming community. If not resumed, a gradual salinity build–up will necessitate the retirement of large areas of fertile agricultural land. Consideration of water quality in relation to optimization of the desalination process is especially critical with agricultural drainage water. Authors, such as Le Gouellec and Elimelech [3], have studied experimentally the conditions for gypsum scale formation on nanofiltration (NF) membrane surfaces for the reclamation of ADW. They reported that scaling occurred at low water recoveries, and was mostly due to calcium sulfate (gypsum) formation of the membrane surface. Applications of water and wastewater treatments by nanofiltration membrane are not wellknown in Iraq [7]. In the present work, a laboratory and a pilot investigation was carried out to evaluate the feasibility of (NF) membrane desalination of agricultural drainage water in the Euphrates and Tigris rivers in Iraq. The treated water will be evaluated for its salts concentration and classified by applying Wilcox diagram [8] to judge its suitability for irrigation. 1.1. Description of the Field In Iraq, the construction of the main drain canal (MDC) began in 1953 to drain saline water used for irrigation and was completed in 1993, and its functions are as follows: 1. To receive water drained from irrigated areas between Euphrates and Tigris Rivers which will lead to decrease soil salinity and increase land productivity. ۲ To protect Euphrates and Tigris Rivers from pollution due to discharges from irrigated areas. 3. To act as a barrier or border against expansion of sand dunes towards the irrigated areas. Figure 1 illustrates the main drain canal (MDC) which originates from Ishaqi Canal, 65 km to the north of Baghdad, and ends at a confluence with the Basra Canal 500 km to the south of Baghdad. The MDC is divided into three sectors; namely, the northern sector (206 km), the middle sector (187 Km), and the southern sector (172 km). There are five monitoring stations (ST- 1 to ST-5) for water quality along the MDC as shown in Figure 1. The MDC collects water from the sub– channels and main drains along its course, and sum an annual quantity of about 6 billion cubic meters. These different sources contain several types of pollutants that affect the water quality and conditions of the surrounding environment. Water may contain organic chemicals, organic matters, dissolved salts, pesticides, herbicides, manure, and fertilizers. 2. MATERIAL AND MATERIALS 2.1. Sample Collection and Analysis Water quality monitoring program was conducted at three locations along the MDC (ST2, ST3, and ST5) for three months (May, August and October, 2011). The total number of collected samples is 45, and were collected at a depth of 30 cm below water surface (15 samples per month with 5 samples per location) starting from ST2 downstream the MDC up to ST5. The samples were collected by using Van Dorn water sampler, and were immediately filtered through a 0.45 m Millipore filter paper. The filtrated samples were placed in plastic containers (1 liter) and frozen until the time of analysis in the central laboratories–Baghdad. Standard methods procedures were followed for the desirable test methods for the monitored parameters [9]. Sampling results are shown in Table 1 together with surface water values for Euphrates River 80 km to the south of Baghdad. In membrane experiments, synthesized agricultural drainage water was prepared and stored in the feed water tank. 2.2. Experimental Procedure and Apparatus 2.2.1. Jar Tests To determine the required antiscalant dosage, bench-scale jar tests were conducted for different concentration factors (CF) of the actual ADW based on the analysis at ST3-location. The tested antiscalant is Hypersperse AS20, which is widely used and commercially available in Iraqi local market.

$$en!!

  راهنمای خرید:
  • همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
  • ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
  • در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.