فایل ورد کامل مسیریابی آگاه از توان بلادرنگ در شبکه های حسگر
توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد
این مقاله، ترجمه شده یک مقاله مرجع و معتبر انگلیسی می باشد که به صورت بسیار عالی توسط متخصصین این رشته ترجمه شده است و به صورت فایل ورد (microsoft word) ارائه می گردد
متن داخلی مقاله بسیار عالی، پر محتوا و قابل درک می باشد و شما از استفاده ی آن بسیار لذت خواهید برد. ما عالی بودن این مقاله را تضمین می کنیم
فایل ورد این مقاله بسیار خوب تایپ شده و قابل کپی و ویرایش می باشد و تنظیمات آن نیز به صورت عالی انجام شده است؛ به همراه فایل ورد این مقاله یک فایل پاور پوینت نیز به شما ارئه خواهد شد که دارای یک قالب بسیار زیبا و تنظیمات نمایشی متعدد می باشد
توجه : در صورت مشاهده بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل می باشد و در فایل اصلی فایل ورد کامل مسیریابی آگاه از توان بلادرنگ در شبکه های حسگر،به هیچ وجه بهم ریختگی وجود ندارد
تعداد صفحات این فایل: ۲۹ صفحه
بخشی از ترجمه :
در این مقاله، RPAR، اولین پروتکل مسیریابی آگاه از توان بلادرنگ برای WSN را توسعه داده ایم. در مقایسه با پروتکل های موجود که با عملکرد بلادرنگ و کارایی انرژی به طور جداگانه رفتار می کنند، RPAR برای دستیابی به تاخیرهای ارتباطی تعیین شده توسط برنامه کاربردی با هزینه انرژی پایئن، الگوریتم های مسیریابی بلادرنگ جدید و تطبیق توان پویا را باهم یکی می کند. یکی دیگر ازویژگی های متمایز کننده RPAR آن است که با خصوصیات واقعی WSN نظیر لینک های پراتلاف، حافظه محدود و پهنای باند سرو کار دارد. شبیه سازیها براساس مدل رادیوی واقع گرایانه موت های MICA2 نشان می دهد RPAR نسبت از دست رفتن موعد و مصرف انرژی را در مقایسه با پروتکل های مسیریابی بلادرنگ و انرژی کارآمد موجود به طور قابل توجهی کاهش می دهد.
عنوان انگلیسی:Real-time Power-Aware Routing in Sensor Networks~~en~~
Many wireless sensor network (WSN) applications require real-time communication. For example, a surveillance system needs to alert authorities of an intruder within a few seconds of detection [1]. Similarly, a fire-fighter may rely on timely temperature updates to remain aware of current fire conditions [2]. Supporting real-time communication in WSNs is very challenging. First, WSNs have lossy links that are greatly affected by environmental factors [3][4]. As a result, communication delays are highly unpredictable. Second, many WSN applications (e.g., border surveillance) must operate for months without wired power supplies. Therefore, WSNs must meet the delay requirements at minimum energy cost. Third, different packets may have different delay requirements. For instance, authorities need to be notified sooner about high-speed motor vehicles than slow-moving pedestrians. To support such applications, a real-time communication protocol must adapt its behavior based on packet deadlines. Finally, due to the resource constraints of WSN platforms, a WSN protocol should introduce minimal overhead in terms of communication and energy consumption and use only a fraction of the available memory for its state. To address these challenges, we propose the Realtime Power-Aware Routing (RPAR) protocol, which supports energy-efficient real-time communication in WSNs. RPAR achieves this by dynamically adapting transmission power and routing decisions based on packet deadlines. RPAR has several salient features. First, it improves the number of packets meeting their deadlines at low energy cost. Second, it has an efficient neighborhood manager that quickly discovers forwarding choices (pairs of a neighbor and a transmission power) that meet packet deadlines while introducing low communication and energy overhead. Moreover, RPAR addresses important practical issues in WSNs, including lossy links, scalability, and severe memory and bandwidth constraints. In the rest of the paper, we first analyze the impact of transmission power on communication delay via an empirical study (Section II) and identify the design goals for real-time power-aware routing (Section III). Next, we present the design of RPAR (Section IV). We evaluate the performance of RPAR through simulations based on a realistic radio model (Section V). We conclude the paper with discussions on open issues (Section VI) and related work (Section VII). II. IMPACT OF TRANSMISSION POWER ON DELAY RPAR is based on the hypothesis that there is an inherent tradeoff between transmission power and communication delay. In this section, we study the impact of transmission power on communication delay in WSNs. We first quantify their relationship through experiments on XSM2 motes. We then discuss the tradeoff between communication delay and network capacity. A. Empirical Study on XSM2 Motes To understand the impact of transmission power on end-toend communication delay, we perform a set of experiments in an office environment using XSM2 motes. Each XSM2 mote is equipped with a Chipcon CC1000 radio. The bandwidth of the radio is 38.4 Kbps, but the effective bandwidth is lower due to packet loss. Five XSM2 motes are placed in a line. The first mote injects packets into the network at a rate of 4 packets per second. Each mote forwards a packet to its next neighbor. When a packet reaches the end of the line, the last mote changes the packet’s direction and sends it back to the source. Each mote runs TinyOS with B-MAC [5] as the MAC protocol. We implemented the Automatic Repeat Request (ARQ) mechanism to improve reliability. Each packet is transmitted at most 5 times. The data and acknowledgement packets are transmitted at the same transmission power. The transmission power is varied from -18 dbm to 2 dbm in increments of 1 dbm. The one-hop distance is varied from 5 feet to 40 feet, in increments of 5 feet. 100 packets are sent at each power level. To evaluate the impact of transmission power on end-toend delay, we measure the delivery velocity of each packet. The delivery velocity is defined as the distance a packet travels divided by its end-to-end delay. As shown in Figure 1, transmission power has a significant impact on delivery velocity. For example, when the one-hop distance is 20 feet, increasing the transmission power results in more than a twofold improvement in delivery velocity, from 0.25 feet/ms at -18 dbm to 0.54 feet/ms at 2 dbm. This is because increasing transmission power effectively improves link quality [6] and, therefore, reduces the number of transmissions needed to deliver a packet. This shows that under light workloads, poor link quality is the root cause of long delays. At each power level, the delivery velocity increases as the one-hop distance increases within a range but drops sharply when the onehop distance exceeds the range due to degrading link quality. The initial improvement in the delivery velocity is due to the packet traveling longer distances at each hop. The drop-off range of delivery velocity corresponds to the boundary of the gray area in packet reception ratio reported in [3][7]. A higher transmission power results in a longer drop-off range, e.g., the neighbor located at 40 feet is not in the communication range when the transmission power is -18 dbm but it has good link quality and high delivery velocity at 2 dbm.
$$en!!
- همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
- ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
- در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.
مهسا فایل |
سایت دانلود فایل 