فایل ورد کامل آناتومی مقایسه ای برگ های pinnata Kalanchoe و K. crenata در شرایط آفتاب و سایه، به عنوان حمایت از شناسایی آنها
توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد
این مقاله، ترجمه شده یک مقاله مرجع و معتبر انگلیسی می باشد که به صورت بسیار عالی توسط متخصصین این رشته ترجمه شده است و به صورت فایل ورد (microsoft word) ارائه می گردد
متن داخلی مقاله بسیار عالی، پر محتوا و قابل درک می باشد و شما از استفاده ی آن بسیار لذت خواهید برد. ما عالی بودن این مقاله را تضمین می کنیم
فایل ورد این مقاله بسیار خوب تایپ شده و قابل کپی و ویرایش می باشد و تنظیمات آن نیز به صورت عالی انجام شده است؛ به همراه فایل ورد این مقاله یک فایل پاور پوینت نیز به شما ارئه خواهد شد که دارای یک قالب بسیار زیبا و تنظیمات نمایشی متعدد می باشد
توجه : در صورت مشاهده بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل می باشد و در فایل اصلی فایل ورد کامل آناتومی مقایسه ای برگ های pinnata Kalanchoe و K. crenata در شرایط آفتاب و سایه، به عنوان حمایت از شناسایی آنها،به هیچ وجه بهم ریختگی وجود ندارد
تعداد صفحات این فایل: ۱۶ صفحه
بخشی از ترجمه :
علیرغم شباهت های آناتومی این گونه ها، تفاوت هایی در شکل توزیع idioblastهای زیراپیدرمی که به صورت مجزا یا گروهی در K. crenata بودند و لایه های شبیه به لایه های موجود در K. pinnata را هرگز تشکیل نمی دادند، ؛ رخداد idioblastها در اپیدرمی فقط در K. crenata؛ و حضور جوانه های فقط در حاشی برگ K. pinnata مشاهده شد.این اختلافات تحت شرایط نوری متفاوت همچنان ثابت بود.ازاینرو،این اختلافات می توانند شناسایی سطح آناتومی گونه ها و در نتیجه کنترل کیفیت داروهای گیاهی K.pinnata و K. crenata مورد حمایت قرار دهند.
عنوان انگلیسی:Comparative anatomy of leaves of Kalanchoe pinnata and K. crenata in sun and shade conditions, as a support for their identification~~en~~
Introduction The species of Crassulaceae are Crassulacean Acid Metabolism (CAM) plants. Unlike C3 and C4 plants, CAM plants assimilate atmospheric CO2 into C4 acids at night, and subsequently fi x this CO2 to the carbohydrate level during the following day (Cushman & Bohnert, 1997). Two species of this family, Kalanchoe pinnata (Lam.) Pers. and K. crenata (Andrews) Haw., are popularly used to treat several diseases, including bronchitis and gastritis (Moreira, et al. 2002; Medeiros et al. 2004; Silva et al., 2006). Besides their common uses, these species share characteristics related to leaf morphology, including decussate, succulent, and glabrous leaves; ovate to elliptical leaf blades; and crenate margins (Hyakutake & Grotta, 1972; Anjoo & Kumar, 2010). Although K. crenata has simple leaves and K. pinnata has simple or compound ones, their leaves are very similar, especially when K. pinnata has only simple leaves. Because of their similarities, both species are known in Brazil as folha-dacosta, saio, and coirama (Brito & Brito, 1993; Medeiros et al. 2004; Silva et al., 2006; Joseph et al., 2011). Several biological activities have been reported for K. pinnata and K. crenata, including antileishmaniasis (Muzitano et al., 2006), antinociceptive, anti-infl ammatory, and antidiabetic (Ojewole, 2005) for K. pinnata, and analgesic and anticonvulsant (Nguelefack et al., 2006) for K. crenata. In both species, the leaf is the plant organ that is most used in folk medicine and in studies of biological activity. Leaves are highly susceptible to environmental variations, mainly light intensity. Leaves developed under high light (sun leaves) are usually smaller and thicker, frequently have a higher density of stomata, a thicker epidermis and cuticle, and more developed mesophyll compared to leaves developed under low light (shade leaves) (Dickison, 2000; Schulze et al., 2002). Knowledge of leaf anatomy is essential for the registration and quality control of herbal medicines (Anvisa RDC No. 48/2004). Plants used in herbal medicines may be subject to different degrees of shading during growth. Therefore, studies of medicinal plants grown under different light conditions are important to examine photomorphogenic changes that may cause problems with their identifi cation (Milaneze-Gutierre et al., 2003). Some anatomical studies have examined K. pinnata (Jain et al. 2008; Anjoo & Kumar, 2010; Leal-Costa et al. 2010) and K. crenata (Hyakutake & Grotta, 1972). However, these studies provided neither information about the influence of environmental light intensity on the leaf anatomy of these species, nor a detailed anatomical description of them. Therefore, in view of the potential for development of herbal medicines from K. pinnata and K. crenata leaves, and considering the difficulties in differentiating between them based on their external morphology during the vegetative stage, this study aimed to contribute to their anatomical description and to highlight distinguishing characters that are stable in different light conditions. Material and Methods Plant material Specimens of Kalanchoe pinnata (Lam.) Pers. and K. crenata (Andrews) Haw., Crassulaceae, were obtained from the Botanical Garden of Rio de Janeiro. The voucher specimens were deposited at the Universidade Federal do Rio de Janeiro Herbarium (RFA37525 and RFA37524, respectively). Cultivation conditions Young plants (4-5 months) were obtained from the Botanical Garden of Rio de Janeiro. Six specimens of each species were planted in individual hard plastic pots, with the same substrate and watering routine. Three plants of each species were grown in sun and three in shade (under a tree). Photosynthetically active radiation (PAR) was measured monthly during the course of a year, on sunny days, with a PAR sensor coupled to an FMS2 Hansatech fluorometer (Hansatech Instruments Ltd., King’s Lynn, UK). The PAR intensity ranged from 413.9 to 801.3 mol m-2 s-1 for the sun plants, and from 12.8 to 19.9 mol m-2 s-1 for the shade plants. Leaf anatomy Three simple leaves from the fourth node of different specimens were fixed in FAA70 (Johansen, 1940). Leaf fragments were embedded in Leica Historesin® and sectioned in a Spencer rotary microtome. Cross sections were made in the proximal, middle, and distal regions of the petiole, and in the base, middle-third and apex of the leaf blade. The sections were stained with toluidine blue and mounted in Entellan®. Paradermal sections were cut mechanically and the fragments were stained in hydroalcoholic safranin (Johansen, 1940). Microchemical tests were performed on fresh material: Sudan III to reveal lipids (Sass, 1951), lugol for starch (Johansen, 1940), Coomassie brilliant blue for protein (Fisher, 1968), and potassium dichromate for phenolic compounds (Gabe, 1968). Measurements of epidermis and mesophyll thickness, number of vascular bundles over 1 mm, and stomatal density were made in the middle third of fourth-node leaves with an optical microscope (Zeiss Standard) equipped with a drawing tube. Three repetitions of ten measurements were made on leaves of different specimens. Statistical analysis was performed by the GraphPad Instat 3.0 for Windows® program, using the t test (p<0.05).
$$en!!
- همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
- ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
- در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.
مهسا فایل |
سایت دانلود فایل 