فایل ورد کامل آشکارسازی توده ها در ماموگرام با تطبیق بر چگالی سینه با الگوریتم ژنتیک، درختهای فیلوژنتیک، ال بی پی و اس وی ام
توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد
این مقاله، ترجمه شده یک مقاله مرجع و معتبر انگلیسی می باشد که به صورت بسیار عالی توسط متخصصین این رشته ترجمه شده است و به صورت فایل ورد (microsoft word) ارائه می گردد
متن داخلی مقاله بسیار عالی، پر محتوا و قابل درک می باشد و شما از استفاده ی آن بسیار لذت خواهید برد. ما عالی بودن این مقاله را تضمین می کنیم
فایل ورد این مقاله بسیار خوب تایپ شده و قابل کپی و ویرایش می باشد و تنظیمات آن نیز به صورت عالی انجام شده است؛ به همراه فایل ورد این مقاله یک فایل پاور پوینت نیز به شما ارئه خواهد شد که دارای یک قالب بسیار زیبا و تنظیمات نمایشی متعدد می باشد
توجه : در صورت مشاهده بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل می باشد و در فایل اصلی فایل ورد کامل آشکارسازی توده ها در ماموگرام با تطبیق بر چگالی سینه با الگوریتم ژنتیک، درختهای فیلوژنتیک، ال بی پی و اس وی ام،به هیچ وجه بهم ریختگی وجود ندارد
تعداد صفحات این فایل: ۵۶ صفحه
بخشی از ترجمه :
۵- جمع بندی
این کار یک روش شناسی را برای ردیابی توده ها در ماموگرافی با کمک تکنیکهای پردازش تصویر ؛ تشخیص الگو و الگوریتمهای سیر تکاملی با انطباق اتوماتیک چگالی برای هر سینه ی تحت انالیز ارائه نموده است.
این روش از تصاویر حاصل از که یک پایگاه داده عمومی است استفاده میکند. به هر حال؛ سایر پایگاههای داده ای میتوانند استفاده شوند. که در ان صورت فقط به تنظیم برخی از پارامترها ی مورد نیاز برای مراحل روش نیاز میباشد. علاوه بر تصاویر؛ اطلاعات زیادتر ی مورد نیاز است؛ مانند علامتگذاری نواحی که محتوی توده هستند و نوع چگالی سینهی مورد آنالیز.
مرحله برای ردیابی چگالی سینه دارای عملکرد خوبی است؛ که نرخ ۱۰۰% را در حساسیت؛ ویژگی و دقت در اعتبار سنجی مدل آموزشی دارد و در مجموع آزمایش دارای، حساسیت؛ ویژگی و دقت میباشد. این نشان میدهد که برای تولید مدلهای آموزشی بخوبی مدیریت شده است؛ که دارای قدرت تعمیم خوبی به موارد جدید میباشد.
عنوان انگلیسی:Detection of masses in mammograms with adaption to breast density using genetic algorithm, phylogenetic trees, LBP and SVM~~en~~
۵ Conclusion
This work presents a methodology for detection of masses in mammography by means of image processing techniques, pattern recognition and evolutionary algorithms which automatically adapt the density of each breast under analysis. The proposed methodology uses images from DDSM, a public image database. However, other databases can be used, which will require only the adjustment of some parameters needed by the stages of the methodology. Besides the images, extra information is necessary, such as markings of the regions that contain masses and type of density of the breast under analysis. The stage for detection of the density of the breast had a good performance, achieving 100% rates of sensitivity, specificity and accuracy in the validation of the training model and, in the test set, 98,10% sensitivity, 98,52% specificity and 98,26% accuracy. This indicates that GA managed to create good training models, which allowed a good generalization capability for new cases.
$$en!!
- همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
- ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
- در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.
مهسا فایل |
سایت دانلود فایل 