فایل ورد کامل طرح نقشه برداری موازی داده فضایی بزرگ بر مبنای بردار: ادغام محاسبات ابری با واحد پردازش گرافیکی
توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد
این مقاله، ترجمه شده یک مقاله مرجع و معتبر انگلیسی می باشد که به صورت بسیار عالی توسط متخصصین این رشته ترجمه شده است و به صورت فایل ورد (microsoft word) ارائه می گردد
متن داخلی مقاله بسیار عالی، پر محتوا و قابل درک می باشد و شما از استفاده ی آن بسیار لذت خواهید برد. ما عالی بودن این مقاله را تضمین می کنیم
فایل ورد این مقاله بسیار خوب تایپ شده و قابل کپی و ویرایش می باشد و تنظیمات آن نیز به صورت عالی انجام شده است؛ به همراه فایل ورد این مقاله یک فایل پاور پوینت نیز به شما ارئه خواهد شد که دارای یک قالب بسیار زیبا و تنظیمات نمایشی متعدد می باشد
توجه : در صورت مشاهده بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل می باشد و در فایل اصلی فایل ورد کامل طرح نقشه برداری موازی داده فضایی بزرگ بر مبنای بردار: ادغام محاسبات ابری با واحد پردازش گرافیکی،به هیچ وجه بهم ریختگی وجود ندارد
تعداد صفحات این فایل: ۳۳ صفحه
بخشی از ترجمه :
۵- نتیجه گیری
در این مقاله، ما یک چارچوب طرح نقشه برداری موازی را برای انتقال داده های بزرگ فضایی بر مبنای بردار در میان نقشه های جایگزین بیان کردیم. چارچوب طرح نقشه برداری موازی بر اساس یکپارچه سـازی قابلیت های سه لایه است: محاسبات با کارایی بالایGPU فعال، محاسبات ابری و وب GIS. این چارچوب یکپارچه حمایت قابل توجهی برای بهترین اعمال نفوذ هر جزء ارائه کرده است که یکدیگر را با توجه به طرح نقشه برداری از داده های بزرگ فضایی کامل می کنند. لایه محاسبات ابری یک مجموعه ای از ماشین های مجازی تهیه می کند که نقش مهمی را از لحاظ تعامل با کاربران پشت صحنه و جلوی صحنه خوشه های محاسبات با کارایی بالا بازی می کند. خوشه های GPU چند هسته ای قدرت محاسبات انبوه موازی را ارائه می دهند که برای مدیریت موثر داده های فضایی بزرگ وعده داد است. نتایج تجربی گزارش شده در این مطالعه نشان داد شتابدهی به طور قابل توجهی از طریق GPU فعال طرح نقشه برداری موازی به دست آمده است. علاوه بر این، اعمال پیش پردازش (به عنوان مثال، جمع آوری) در داده های فضایی بزرگ از استراتژی های مورد علاقه و طراحی موازی متناسب با داده های فضایی برای اعمال نفوذ قدرت محاسبات موازی به طور انبوهی در GPU های چند هسته ای ضرورت دارد. استراتژی های موازی، نشان داده شده با تجزیه دامنه و توازن بار، از اهمیت ویژه ای برای دستیابی به بهترین بهره برداری از منابع محاسباتی با کارآیی بالا در پردازش و تجزیه و تحلیل داده های GIS مرتبط برخوردارند (وانگ، ۲۰۱۰، شیا، لیو، یه، وو، و زو ، ۲۰۱۲، شیا و همکاران، ۲۰۱۱؛ یانگ، وو و همکاران، ۲۰۱۱ را مشاهده کنید).
عنوان انگلیسی:Parallel map projection of vector-based big spatial data: Coupling cloud computing with graphics processing units~~en~~
۵ Conclusion
In this article, we develop a parallel map projection framework for the transformation of vector-based big spatial data among alternative map projections. The parallel map projection framework is based on the integration of capabilities of three layers: GPU-enabled high-performance computing, cloud computing, and Web GIS. This integrative framework provides substantial support for best leveraging each component that complements to each other with respect to the map projection of big spatial data. The layer of cloud computing provisions a collection of virtual machines that serves a key role in terms of interacting with frontend users and back-end high-performance computing clusters. GPU clusters provide many-core massively parallel computing power that holds great promise for handling efficiently big spatial data. Experimental results reported in this study demonstrate substantial acceleration obtained through GPU-enabled parallel map projection. Moreover, it is imperative to apply pre-processing (e.g., aggregation) on big spatial data of interest and design parallel strategies tailored to the spatial data to leverage the massively parallel computing power on many-core GPUs. Parallel strategies, represented by domain decomposition and load balancing, are of particular importance for achieving the best exploitation of highperformance computing resources on the processing and analysis of GIS-relevant data (see Wang, 2010; Xia, Liu, Ye, Wu, & Zhu, 2012; Xia et al., 2011; Yang, Wu et al., 2011).
$$en!!
- همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
- ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
- در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.
مهسا فایل |
سایت دانلود فایل 