فایل ورد کامل تجزیه و تحلیل مجموعه ویژگی مبتنی بر ماشین بردار پشتیبان در تشخیص کاراکتر دست خط مالایایی
توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد
این مقاله، ترجمه شده یک مقاله مرجع و معتبر انگلیسی می باشد که به صورت بسیار عالی توسط متخصصین این رشته ترجمه شده است و به صورت فایل ورد (microsoft word) ارائه می گردد
متن داخلی مقاله بسیار عالی، پر محتوا و قابل درک می باشد و شما از استفاده ی آن بسیار لذت خواهید برد. ما عالی بودن این مقاله را تضمین می کنیم
فایل ورد این مقاله بسیار خوب تایپ شده و قابل کپی و ویرایش می باشد و تنظیمات آن نیز به صورت عالی انجام شده است؛ به همراه فایل ورد این مقاله یک فایل پاور پوینت نیز به شما ارئه خواهد شد که دارای یک قالب بسیار زیبا و تنظیمات نمایشی متعدد می باشد
توجه : در صورت مشاهده بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل می باشد و در فایل اصلی فایل ورد کامل تجزیه و تحلیل مجموعه ویژگی مبتنی بر ماشین بردار پشتیبان در تشخیص کاراکتر دست خط مالایایی،به هیچ وجه بهم ریختگی وجود ندارد
تعداد صفحات این فایل: ۲۴ صفحه
بخشی از ترجمه :
VI : نتیجه گیری
تشخیص کاراکتر زبان مالایی آنلاین پایه ماشین بردار پشتیبان در این مقاله پیشنهاد می گردد . ما ویژگی های مختلف و ربط اش را در تشخیص آنلاین توضیح داده ایم . مجموع ۳۰۸ نمونه از شیوه های مختلف جمع اوری شده از گروه ۲۰ نفری برای اموزش استفاده می شوند . دسته کننده ماشین بردار پشتیان با زیرساخت چند جمله ای درجه سه می تواند دقت خوب حدود ۹۷۷۲۷۳ درصدی را در آزمایشات فراهم نماید و دسته کننده تنها به زمان اموزش کمتر در مقایسه با شبکه های عصبی مصنوعی و مدل های مارکوف مخفی نیاز دارد . چون این یک کار زمانی واقعی می باشد ، ما به دسته کننده های با سرعت و دقت خوب نیاز اریم . مشخص گردید که دقت برای دستخط مستقیم با سرعت نوشتن متوسط بیشتر می باشد . نقاط کمتر در صورتی ثبت خواهند شد که نوشتن بسیار سریع باشد . کاراکتر های داری حلقه ها و ویژگی جهتی یکسان برای دسته بندی اشتباه مستعد هستند . دسته بندی اشتباه را با یکی کردن دیکشنری مالایی و مثال های آموزش بیشتر می توان به حداقل رساند . کل حروف که در اینجا آزمایش شده اند از حرف های تکی می باشند . تحلیل بیشتر در مورد شناسایی حرف دوتایی و استخراج ویژگی برای شناسایی کل حروف با دستخط پیچیده شبیه مالایی مورد نیاز می باشد .
عنوان انگلیسی:SVM Based Feature Set Analysis in Dynamic Malayalam Handwritten Character Recognition~~en~~
VI. CONCLUSION
This paper proposes an SVM based online Malayalam character recognition. We explained different features and its relevance on online recognition. A total of 308 samples of different styles collected from a group of 20 people are used for training. SVM classifier with polynomial kernel, degree 3 provides good accuracy about 97.7273% in experiments and the classifier needs only less training time compared to Artificial Neural Networks and Hidden Markov Models. Since this is a real time work, we need classifiers with good speed and accuracy. The accuracy is found to be more for ”straight hand writing” with a moderate writing speed. Lesser points will be recorded if too fast the writing. Characters having loops and same directionality are prone to miss-classification. Incorporating Malayalam dictionary and more training examples, miss-classification can be minimized . All the strokes experimented here are single strokes. More analysis is needed on double stroke identification and a feature extraction to identify all the strokes of complex script like Malayalam.
$$en!!
- همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
- ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
- در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.
مهسا فایل |
سایت دانلود فایل 