فایل ورد کامل کدهای (۶ ۳)-MDS برروی یک حرف الفبا در اندازه ۴


در حال بارگذاری
10 جولای 2025
پاورپوینت
17870
4 بازدید
۷۹,۷۰۰ تومان
خرید

توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد

این مقاله، ترجمه شده یک مقاله مرجع و معتبر انگلیسی می باشد که به صورت بسیار عالی توسط متخصصین این رشته ترجمه شده است و به صورت فایل ورد (microsoft word) ارائه می گردد

متن داخلی مقاله بسیار عالی، پر محتوا و قابل درک می باشد و شما از استفاده ی آن بسیار لذت خواهید برد. ما عالی بودن این مقاله را تضمین می کنیم

فایل ورد این مقاله بسیار خوب تایپ شده و قابل کپی و ویرایش می باشد و تنظیمات آن نیز به صورت عالی انجام شده است؛ به همراه فایل ورد این مقاله یک فایل پاور پوینت نیز به شما ارئه خواهد شد که دارای یک قالب بسیار زیبا و تنظیمات نمایشی متعدد می باشد

توجه : در صورت مشاهده بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل می باشد و در فایل اصلی فایل ورد کامل کدهای (۶ ۳)-MDS برروی یک حرف الفبا در اندازه ۴،به هیچ وجه بهم ریختگی وجود ندارد

تعداد صفحات این فایل: ۲۱ صفحه


بخشی از ترجمه :

چکیده

یک کد (n,k) q -MDS C برروی حرف الفبای A (در اندازه q) مجموعه ای از nتاپل q k برروی است به گونه ای که هیچ دو کلمه ای از C در k موقعیت مختصات توافق ندارند. این گونه استنباط می شود که n q + k 1 با ابزارهای ترکیبی مقدماتی (ابتدایی)، نشان می دهیم که با این پارامترها، هر کد (۶, ۳)۴-MDS، خطی یا غیر خطی، به کد (۶, ۳)۴-MDSخطی یا کدی هم ارز با کد خطی تبدیل می شود. این چنین استنباط می شود که هر کد (۵, ۳)۴-MDS برروی A بایستی نظیر کد خطی نیز باشد.

۱- مقدمه

کد [n, k] خطی با مینیموم (حداقل) فاصله رابطه d n k + 1– را ارضا می کند که حد منفرده یا مجموعه تک عنصری [۱۰] را نشان می دهد. کد [n, k] خطی که حد Singleton (منفرده) را تامین می کند، ماکزیمم فاصله تفکیک پذیر خطی یا کد MDS نامیده شده است. به همین ترتیب، زمانی که فرضیاتی در رابطه با خاصیت خطی مطرح نشده باشد، کد (n, k)-MDS C برروی حرف الفبای A در اندازه q ( یک کد an (n, k)q-MDS) مجموعه ای از n تاپل q k برروی A است، به گونه ای که هیچ دو کلمه ای از C با k موقعیت مختصات توافق ندارند. این گونه استنباط می شود که n q + k 1 (با تساوی، تنها به شرطی که q زوج باشد). چنین کدهایی، در صورت وجود، به دو صورت خطی یا غیر خطی ظاهر می شوند. کدهای MDS خطی بیشتر در علوم ریاضی و مهندسی مطالعه شده اند (به مراجع [۵]، [۱۰]یا [۱۳] نگاه کنید). تحت عنوان کدهای MDS، سئوالات حل نشده زیادی وجود دارد. به ویژه، در مورد نمونه غیر خطی، اطلاعات بسیار کمی بدست آمده است.

عنوان انگلیسی:(۶,۳)-MDS Codes over an Alphabet of Size 4~~en~~

Abstract

An (n, k)q-MDS code C over an alphabet A (of size q) is a collection of q k ntuples over A such that no two words of C agree in as many as k coordinate positions. It follows that n q + k 1 By elementary combinatorial means we show that every (6, 3)4-MDS code, linear or not, turns out to be a linear (6, 3)4-MDS code or else a code equivalent to a linear code with these parameters. It follows that every (5, 3)4-MDS code over A must also be equivalent to linear.

 

۱- Introduction

A linear [n, k]-code of minimum distance d satisfies d n k + 1–the Singleton bound [10]. A linear [n, k]-code meeting the Singleton bound is called a linear Maximum Distance Separable, or MDS code. Analogously, when no assumptions regarding linearity are made, an (n, k)-MDS code C over an alphabet A of size q (an (n, k)q-MDS code) is a collection of q k ntuples over A such that no two words of C agree in as many as k coordinate positions. It follows that n q + k 1 (with equality only if q is even). Such codes, when they exist may or may not be linear. Linear MDS codes are much studied in the mathematical and engineering sciences (see [5], [10], or [13]). Under the rubric of MDS codes there are many open questions. In particular, very little is known in the nonlinear case.

$$en!!

  راهنمای خرید:
  • همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
  • ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
  • در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.