فایل ورد کامل استخراج شاخص ویژگی ضمنی برای نظر کاوی مبتنی بر ویژگی (تجزیه تحلیل مبتنی بر سطح ویژگی احساسات)
توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد
این مقاله، ترجمه شده یک مقاله مرجع و معتبر انگلیسی می باشد که به صورت بسیار عالی توسط متخصصین این رشته ترجمه شده است و به صورت فایل ورد (microsoft word) ارائه می گردد
متن داخلی مقاله بسیار عالی، پر محتوا و قابل درک می باشد و شما از استفاده ی آن بسیار لذت خواهید برد. ما عالی بودن این مقاله را تضمین می کنیم
فایل ورد این مقاله بسیار خوب تایپ شده و قابل کپی و ویرایش می باشد و تنظیمات آن نیز به صورت عالی انجام شده است؛ به همراه فایل ورد این مقاله یک فایل پاور پوینت نیز به شما ارئه خواهد شد که دارای یک قالب بسیار زیبا و تنظیمات نمایشی متعدد می باشد
توجه : در صورت مشاهده بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل می باشد و در فایل اصلی فایل ورد کامل استخراج شاخص ویژگی ضمنی برای نظر کاوی مبتنی بر ویژگی (تجزیه تحلیل مبتنی بر سطح ویژگی احساسات)،به هیچ وجه بهم ریختگی وجود ندارد
تعداد صفحات این فایل: ۲۱ صفحه
بخشی از ترجمه :
عنوان انگلیسی:Implicit Aspect Indicator Extraction for Aspect-based Opinion Mining~~en~~
ABSTRACT
Aspect-based opinion mining aims to model relations between the polarity of a document and its opinion targets, or aspects. While explicit aspect extraction has been widely researched, limited work has been done on extracting implicit aspects. An implicit aspect is the opinion target that is not explicitly specified in the text. E.g., the sentence “This camera is sleek and very affordable” gives an opinion on the aspects appearance and price, as suggested by the words “sleek” and “affordable”; we call such words Implicit Aspect Indicators (IAI). In this paper, we propose a novel method for extracting such IAI using Conditional Random Fields and show that our method significantly outperforms existing approaches. As a part of this effort, we developed a corpus for IAI extraction by manually labeling IAI and their corresponding aspects in a well-known opinion-mining corpus. To the best of our knowledge, our corpus is the first publicly available resource that specifies implicit aspects along with their indicators.
۱ INTRODUCTION
Opinion mining comprises a set of technologies for extracting and summarizing opinions expressed in web-based user-generated contents. It improves the quality of life for ordinary people by permitting them to consider the collective opinion of other users on a product, political figure, tourist destination, etc. It improves the incomes of businesses by letting them know what the consumers like and what they do not like. It improves the democracy by permitting political parties and governments evaluate in real time social acceptance of their programs and actions. Opinion mining depends on accurate detection of opinions expressed in individual documents, such as blog posts, tweets, or user-contributed comments. Such detection can be done at different levels of granularity. For example, the polarity of the whole document can be determined: whether the author expresses a positive or negative opinion. For a comment on a specific product, this level of granularity might be enough. However, it is often desirable to determine sentence per sentence a specific aspect of the product on which opinion is expressed in the given sentence. Aspect-based Opinion Mining [1, 2] considers relations between the aspects of the object of the opinion and the document polarity (positive or negative feeling expressed in the opinion). Aspect are also called opinion targets. An aspect is a concept on which the author expresses their opinion in the document. Consider, for example, a sentence “The optics of this camera is very good and the battery life is excellent.” We can say that the polarity of this review of a photo camera is positive. However, more specifically, what the author likes are optics and battery life of this camera. These concepts are the aspects of this opinion. Aspect Extraction is the task of identifying the aspects, or opinion targets, or a given opinionated document. The aspects can be of two types: explicit aspects and implicit aspects. Explicit aspects correspond to specific words in the document: in our example, the opinion targets optics and battery life explicitly appear in the document. In contrast, an implicit aspect is not specified explicitly in the document. Consider the sentence “This phone is inexpensive and beautiful.” This sentence expresses a positive opinion on price and appearance of the phone. These aspects would be explicit in an equivalent sentence “The price of this phone is low and its appearance is beautiful.” While there are many works devoted to the explicit aspect extraction, implicit aspect extraction is much less studied. Implicit aspect extraction is much more complicated than explicit aspect extraction. However, implicit aspects are ubiquitous in the documents, as the following example from the corpus described in [1] shows: This is the best phone one could have. It has all the features one would need in a cellphone: It is lightweight, sleek and attractive. I found it very user-friendly and easy to manipulate; very convenient to scroll in menu etc. In this example,
$$en!!
- همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
- ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
- در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.
مهسا فایل |
سایت دانلود فایل 