فایل ورد کامل تشخیص سرچشمه شایعه در شبکه های اجتماعی با توپولوژی متغیر با زمان
توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد
این مقاله، ترجمه شده یک مقاله مرجع و معتبر انگلیسی می باشد که به صورت بسیار عالی توسط متخصصین این رشته ترجمه شده است و به صورت فایل ورد (microsoft word) ارائه می گردد
متن داخلی مقاله بسیار عالی، پر محتوا و قابل درک می باشد و شما از استفاده ی آن بسیار لذت خواهید برد. ما عالی بودن این مقاله را تضمین می کنیم
فایل ورد این مقاله بسیار خوب تایپ شده و قابل کپی و ویرایش می باشد و تنظیمات آن نیز به صورت عالی انجام شده است؛ به همراه فایل ورد این مقاله یک فایل پاور پوینت نیز به شما ارئه خواهد شد که دارای یک قالب بسیار زیبا و تنظیمات نمایشی متعدد می باشد
توجه : در صورت مشاهده بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل می باشد و در فایل اصلی فایل ورد کامل تشخیص سرچشمه شایعه در شبکه های اجتماعی با توپولوژی متغیر با زمان،به هیچ وجه بهم ریختگی وجود ندارد
تعداد صفحات این فایل: ۳۷ صفحه
بخشی از ترجمه :
چکیده
شناسایی کردن منابع شایعه ها در شبکه های اجتماعی نقش بسیار مهمی در محدود کردن میزان آسیب های این شایعات از طریق قرنطینه کردن منبع شایعه دارد. اما، تغییرات زمانی در شکل ساختاری یا توپولوژی این شبکه های اجتماعی و روند های پویا، موجب می شود که تکنیک های سنتی شناسایی کردن منبع شایعه که در شبکه های ایستا مورد استفاده قرار می گرفت، با چالش رو به رو شود. در این مقاله، ما از یک ایده ی جرم شناسی استفاده می کنیم و یک روش جدید برای رفع این چالش ها ارائه می کنیم. در این روش، ما نخست شبکه های متغیر با زمان را به صورت یک سری شبکه های ایستا کوتاه می کنیم و این کار را با پنجره های ادغام زمانی، انجام می دهیم. دوما، به جای منتشر کردن تمام افراد در تکنیک های متداول، ما از یک برنامه ی نشر معکوس استفاده می کنیم تا بتوانیم یک مجموعه از منابع مظنون را برای شناسایی منبع واقعی شایعه، مشخص کنیم. این روند موجب رفع مشکل مقیاس پذیری مسئله ی شناسایی منبع شایعه می شود و ازین رو، به صورت محسوس موجب افزایش کارایی روند شناسایی منبع شایعه می گردد. سوما، برای مشخص کردن منابع واقعی شایعه نسبت به موارد مظنون شناسایی شده، ما از یک مدل نشر شایعه در مقیاس کوچک استفاده می کنیم تا برای هر مظنون، بیشترین احتمال ( ML) را محاسبه کنیم. آن منبعی که بیشترین تخمین ML را ایجاد کند، به عنوان منبع اصلی شایعه در نظر گرفته می شود. ارزیابی ها در این روش بر روی یک شبکه ی اجتماعی واقعی با شکل ساختاری متغیر با زمان اجرا شده است. نتایج آزمایش ها نشان می دهد که روش ما می تواند ۶۰ تا ۹۰ درصد از فضای جست جو برای شایعه را در شبکه های اجتماعی مختلف متغیر با زمان، کاهش دهد. همچنین نتایج نشان می دهد که روش ما می تواند منبع واقعی شایعه را به صورت صحیح تشخیص بدهد، یا فردی را شناسایی کند که نسبت به منبع واقعی شایعه بسیار نزدیک می باشد. بر اساس بهترین دانسته های ما، این روش اولین روشی است که می توان از آن برای شناسایی کردن منبع شایعه در شبکه های اجتماعی متغیر با زمان استفاده کرد.
۸- جمع بندی و کار های آتی
در این مقاله، ما مسئله ی شناسایی کردن منابع شایعه را در شبکه های اجتماعی متغیر با زمان بررسی می کنیم که در این روش می توان آن ها را به صورت یک سری از شبکه های ایستا ، با استفاده از پنجره های زمانی ادغام شده، کوتاه کرد. برای رفع کردن چالش ایجاد شده در اثر شبکه های اجتماعی متغیر با زمان، ما از دو روش ابتکاری استفاده می کنیم. نخست، ما از یک روش نشر معکوس جدید استفاده می کنیم که می تواند به شدت فضای جست جو را کاهش دهد. این موضوع موجب رفع مشکل مقیاس پذیری در فضای جست جو شده و ازین رو کارایی این روش را تا حد بسیار زیادی بهبود می دهد. سپس ما یک مدل تحلیلی برای نشر شایعه در شبکه های اجتماعی متغیر با زمان ارائه می کنیم. بر اساس این مدل، ما بیشترین احتمال از هر گره ی احتمالی را بررسی می کنیم تا بتوانیم منابع واقعی شایعه را نسبت به موارد مظنون، شناسایی کنیم. ما یک سری از آزمایش ها برای ارزیابی کردن کارایی این روش انجام می دهیم. نتایج این آزمایش ها نشان می دهد که روش ما برای شناسایی کردن منابع شایعه در انواع مختلف از شبکه های اجتماعی متغیر با زمان عملکرد خوبی دارد.
عنوان انگلیسی:Rumor Source Identification in Social Networks with Time-varying Topology~~en~~
Abstract
Identifying rumor sources in social networks plays a critical role in limiting the damage caused by them through the timely quarantine of the sources. However, the temporal variation in the topology of social networks and the ongoing dynamic processes challenge our traditional source identification techniques that are considered in static networks. In this paper, we borrow an idea from criminology and propose a novel method to overcome the challenges. First, we reduce the time-varying networks to a series of static networks by introducing a time-integrating window. Second, instead of inspecting every individual in traditional techniques, we adopt a reverse dissemination strategy to specify a set of suspects of the real rumor source. This process addresses the scalability issue of source identification problems, and therefore dramatically promotes the efficiency of rumor source identification. Third, to determine the real source from the suspects, we employ a novel microscopic rumor spreading model to calculate the maximum likelihood (ML) for each suspect. The one who can provide the largest ML estimate is considered as the real source. The evaluations are carried out on real social networks with time-varying topology. The experiment results show that our method can reduce 60 – 90 percent of the source seeking area in various time-varying social networks. The results further indicate that our method can accurately identify the real source, or an individual who is very close to the real source. To the best of our knowledge, the proposed method is the first that can be used to identify rumor sources in time-varying social networks.
۸- CONCLUSION AND FUTURE WORK
In this paper, we explore the problem of rumor source identification in time-varying social networks that can be reduced to a series of static networks by introducing a time-integrating window. In order to address the challenges posted by time-varying social networks, we adopted two innovative methods. First, we utilized a novel reverse dissemination method which can sharply narrow down the scale of suspicious sources. This addresses the scalability issue in this research area and therefore dramatically promotes the efficiency of rumor source identification. Then, we introduced an analytical model for rumor spreading in time-varying social networks. Based on this model, we calculated the maximum likelihood of each suspect to determine the real source from the suspects. We conduct a series of experiments to evaluate the efficiency of our method. The experiment results indicate that our methods are efficient in identifying rumor sources in different types of real time-varying social networks.
$$en!!
- همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
- ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
- در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.
مهسا فایل |
سایت دانلود فایل 