فایل ورد کامل مدلسازی منحنی توان توربین بادی با استفاده از شبکه عصبی مصنوعی
توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد
این مقاله، ترجمه شده یک مقاله مرجع و معتبر انگلیسی می باشد که به صورت بسیار عالی توسط متخصصین این رشته ترجمه شده است و به صورت فایل ورد (microsoft word) ارائه می گردد
متن داخلی مقاله بسیار عالی، پر محتوا و قابل درک می باشد و شما از استفاده ی آن بسیار لذت خواهید برد. ما عالی بودن این مقاله را تضمین می کنیم
فایل ورد این مقاله بسیار خوب تایپ شده و قابل کپی و ویرایش می باشد و تنظیمات آن نیز به صورت عالی انجام شده است؛ به همراه فایل ورد این مقاله یک فایل پاور پوینت نیز به شما ارئه خواهد شد که دارای یک قالب بسیار زیبا و تنظیمات نمایشی متعدد می باشد
توجه : در صورت مشاهده بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل می باشد و در فایل اصلی فایل ورد کامل مدلسازی منحنی توان توربین بادی با استفاده از شبکه عصبی مصنوعی،به هیچ وجه بهم ریختگی وجود ندارد
تعداد صفحات این فایل: ۲۲ صفحه
بخشی از ترجمه :
۷ نتیجه گیری
شبکههای عصبی مصنوعی با ۶ ورودی برای شناسایی عملکرد توربین باد سایت ویژه ارائه شده است. نتایج این روش مدلسازی با مدلهای پارامتری، غیر پارامتری و گسسته مقایسه شدند. در این مطالعه توربین، نشان داده شد که همبستگی استراتژی ۶ ورودی در روش مدلسازی ANN چند مرحلهای، احتمال ترکیب بیشتر متغیرها و کاهش سطح خطا را به دنبال دارد. با داشتن اطلاعات بیشتر( مثلاً سرعت باد در بالای ارتفاع هاب، جهت باد و )، اطلاعات بیشتری هم به راحتی به مدل داده میشود و خطای کمتری هم خواهیم داشت. این ارائه با توجه به این حقیقت که تعامل کمتر بین ورودیها در دو سایت در نظر گرفته شده وجود دارد و توان نرمال شده بین هر گام مدلسازی ارائه شده است امکانپذیر و عملی میباشد.
این نتایج پتانسیل شبکه عصبی MLP دو لایه به مدل مناسب عملکرد توان توربین باد را نشان میدهد که به راحتی با نگهداری برنامههایی که بر تشخیص عملکرد ضعیف تمرکز میکنند قابل استفاده میباشد [۳۵]. علاوه بر این، نشان داده که انتخاب ۶ پارامتر حیاتی است و از میان ۵۰ پارامتر تست شده از لحاط تنوع بین توان خروجی پیش بینی شده و مشاهده شده به دست آمدهاند.
عنوان انگلیسی:Wind turbine power curve modelling using artificial neural network~~en~~
۷ Conclusion
Artificial neural networks with six inputs have been developed in order to identify an accurate model site-specific wind turbine performance. Results of this modelling technique were compared with parametric, non-parametric, and discrete methods. For the two turbines studied, it has been demonstrated that the strategic incorporation of 6 inputs in a multi-stage ANN modeling technique, the possibility to incorporate further variables as needed and the decrease in the level of errors is able to outperform previously developed models. With further data available (e.g. wind speeds above hub height, wind veer, etc.) more inputs could have been easily added into the model and potential further lower the errors levels obtained. This is rendered possible due to the facts that low interactions between inputs have been found in the two sites considered and that power normalization between each modelling steps is performed. These results demonstrate the potential of the two-layer MLP neural network to properly model the power performance of wind turbines which could be easily used by maintenance application focus on underperformance detection [35]. Furthermore, it has been shown that the choice of the six parameters is crucial and has been selected amongst more than fifty potential parameters tested in term of variability in differences between observed and predicted power output.
$$en!!
- همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
- ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
- در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.
مهسا فایل |
سایت دانلود فایل 