فایل ورد کامل رفتار ساختاری پوسته بافت سبک وزن، بتن تقویت شده نساجی


در حال بارگذاری
10 جولای 2025
پاورپوینت
17870
3 بازدید
۷۹,۷۰۰ تومان
خرید

توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد

این مقاله، ترجمه شده یک مقاله مرجع و معتبر انگلیسی می باشد که به صورت بسیار عالی توسط متخصصین این رشته ترجمه شده است و به صورت فایل ورد (microsoft word) ارائه می گردد

متن داخلی مقاله بسیار عالی، پر محتوا و قابل درک می باشد و شما از استفاده ی آن بسیار لذت خواهید برد. ما عالی بودن این مقاله را تضمین می کنیم

فایل ورد این مقاله بسیار خوب تایپ شده و قابل کپی و ویرایش می باشد و تنظیمات آن نیز به صورت عالی انجام شده است؛ به همراه فایل ورد این مقاله یک فایل پاور پوینت نیز به شما ارئه خواهد شد که دارای یک قالب بسیار زیبا و تنظیمات نمایشی متعدد می باشد

توجه : در صورت مشاهده بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل می باشد و در فایل اصلی فایل ورد کامل رفتار ساختاری پوسته بافت سبک وزن، بتن تقویت شده نساجی،به هیچ وجه بهم ریختگی وجود ندارد

تعداد صفحات این فایل: ۲۶ صفحه


بخشی از ترجمه :

بخشی از مقاله انگلیسیعنوان انگلیسی:Structural behavior of a lightweight, textile-reinforced concrete barrel vault shell~~en~~

Buckling and stability behavior in response to compressive stresses within a thin-walled shell structure.

In order to set the present work within the broader context of existing modeling approaches, we will shortly review recent developments in the field of numerical modeling and experimental observations in relation to the three aforementioned phenomena in the following subsections.

(I) Uniaxial tensile behavior. Based on the need to understand and characterize the tensile behavior of quasi-ductile composites, several modeling approaches have been developed in recent years with the intention of reflecting the elementary damage mechanisms of matrix cracking and the debonding of the fabric from the matrix. Mesoscale models with explicit representation of the reinforcement layout within the cross section enable the study and understanding of the damage evolution process in the composite, and can be used to identify suitable combinations of materials, fabric geometries, short fiber volume fractions, and lengths [6, 7, 8, 9, 10]. Special attention has been paid to the modeling of the local disintegration process within the inherently heterogeneous bond structure in cementitious composites reinforced with multi-filament yarns in the crack bridge and its vicinity [11].

Experimental studies of cementitious composites reinforced with textile fabrics or with short fibers have also been reported (e.g., in [12, 13]). Experimental research on the tensile behavior of textile-reinforced concrete has been presented in [14, 15, 16]. A standardized tensile test setup for textile-reinforced concrete has been recently published in a RILEM recommendation [17].

(II) Two-dimensional, anisotropic damage propagation. Modeling approaches reflecting the interaction between the matrix and reinforcement within a thin plate in a finite element model have been presented by several authors [18, 19]. These models describe the bond between fabrics and matrix as a two-dimensional, zero-thickness interface with slip displacement governed by a predefined bond law. These approaches are suitable for sparsely reinforced cross sections with one or two reinforcement layers. Another example of this modeling approach was presented in [20], in which two bond interfaces were used: one between the concrete matrix and sleeve filament, and the other between the sleeve and core filaments. The model considers a nonlinear elasto-plastic material model for the concrete matrix, and an idealized linear elastic behavior with tension stiffening for the fabric reinforcement.

The modeling approach followed in this paper uses a smeared representation of the material structure within a cross section, describing the cracking and debonding phenomenologically in terms of an anisotropic damage tensor. Such an idealization assumes a homogeneous layout of reinforcements over the cross-sectional height. The applied numerical representation of a cross section is sketched in Fig. 2, indicating the types of cross sections that can be addressed by the smeared modeling approach; namely, cementitious composites with randomly distributed short fibers (i), regularly distributed, continuous fabrics (ii), or combinations of both (iii). It is possible to reflect both strain-softening and strain-hardening composites using dispersed, finely distributed reinforcements.

The numerical idealization described here is related to approaches for modeling ordinary steel-reinforced concrete shells developed in recent decades [21, 22]. The modeling approaches were developed for the simulation of large-scale shell structures, such as cooling towers or power plants. In these structures, the development of a crack pattern with very small crack distances compared to the size of the structure justifies a smeared approach to model the material behavior at the level of a shell cross section. Examples of finite element shell formulations combined with an elasto-plastic damage model to simulate reinforced concrete shells under monotonic and cyclic loads have been presented in [23], employing a Drucker-Prager type elastoplastic damage model in compression and a continuum damage model with a Rankine stress limit in tension. Using the same material model, the damage evolution and failure of large cooling towers was investigated in [24], considering a two-dimensional failure mode within the shell elements. In another numerical framework for the nonlinear analysis of the damage evolution in steel-reinforced concrete shells, three major topics that may affect the accuracy of the simulations were covered: (1) the formulation of adequate finite elements to describe the shell geometry, as well as the boundary and load conditions; (2) the development of realistic material models; and (3) the estimation of discretization errors [25].

The modeling methods described provide valuable insight for the formulation of design models that realistically reflect the ultimate limit state assessment of shell structures. Examples of design tools developed were provided, for example, in [26], which describes a framework for the integrated design, analysis, and assessment of the loadbearing capacity of segmented concrete shell structures. The development of numerical techniques in the coupled analysis of the manufacturing process and anisotropic material behavior of fiber-reinforced polymer thin-walled shells was presented in [27]. Meanwhile, the safety and reliability analysis of reinforced concrete shells is presented in [28], using response surface methods and axisymmetric nonlinear finite element analysis. An example of a design model for the prediction of the moment-curvature relationship of a TRC cross section has been presented in [29], which derives design equations and charts for flexural composite members. The general framework for dimensioning and assessing thin-walled, regularly reinforced TRC shells reflecting the two-dimensional interaction between normal forces and bending moments has been presented by the authors of[4]. The application of this design model to a large-scale pavilion with a TRC roof has been described in [2].

$$en!!

  راهنمای خرید:
  • همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
  • ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
  • در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.