فایل ورد کامل فرآوری، تغییرات میکروساختاری و خصوصیات استقامت کامپوزیت های ماتریس منیزیم در محل که حاوی ذرات SiCNO مشتق پلیمری در اندازه نانویی می باشند
توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد
این مقاله، ترجمه شده یک مقاله مرجع و معتبر انگلیسی می باشد که به صورت بسیار عالی توسط متخصصین این رشته ترجمه شده است و به صورت فایل ورد (microsoft word) ارائه می گردد
متن داخلی مقاله بسیار عالی، پر محتوا و قابل درک می باشد و شما از استفاده ی آن بسیار لذت خواهید برد. ما عالی بودن این مقاله را تضمین می کنیم
فایل ورد این مقاله بسیار خوب تایپ شده و قابل کپی و ویرایش می باشد و تنظیمات آن نیز به صورت عالی انجام شده است؛ به همراه فایل ورد این مقاله یک فایل پاور پوینت نیز به شما ارئه خواهد شد که دارای یک قالب بسیار زیبا و تنظیمات نمایشی متعدد می باشد
توجه : در صورت مشاهده بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل می باشد و در فایل اصلی فایل ورد کامل فرآوری، تغییرات میکروساختاری و خصوصیات استقامت کامپوزیت های ماتریس منیزیم در محل که حاوی ذرات SiCNO مشتق پلیمری در اندازه نانویی می باشند،به هیچ وجه بهم ریختگی وجود ندارد
تعداد صفحات این فایل: ۲۸ صفحه
بخشی از ترجمه :
بخشی از مقاله انگلیسیعنوان انگلیسی:Processing, microstructural evolution and strength properties of in-situ magnesium matrix composites containing nano-sized polymer derived SiCNO particles~~en~~
Abstract
In-situ Mg matrix composites are fabricated by combining both liquid- and solid-state processing routes. Firstly, liquid polymer was injected into the molten Mg at a temperature of 800 °C to initiate pyrolysis. In-situ pyrolysis aids in the conversion of liquid polymer into sub-micron sized SiCNO particles (mean particle size in the range of 0.5– µm) and Mg2Si particles. Most of the polymer derived SiCNO particles were pushed by the solidification front and as a result segregated at the grain boundaries of as-cast composites (mean grain size in range of 50– µm) during subsequent solidification process. Formation of Mg2Si phase could be minimized by reducing the pyrolysis temperature from 800 to 700 °C. Single pass friction stir processing (FSP) of these as-cast composites lead to improved homogeneity in the SiCNO particle distribution, particle refinement (mean particle size of about 200– nm) and grain refinement (mean grain size in range of 2.5– µm). Mechanical properties (hardness, compressive yield stress, ultimate compressive stress, strain to failure and strain hardening exponent) of the FS processed composites were enhanced significantly as compared to their as-cast counterparts. Strengthening mechanisms and numerical models are being evoked to explain the observed yield strength in these two stage processed composites.
Introduction
Magnesium metal matrix composites (MMMCs) have significant potential in the design and manufacturing of next generation automotive and aerospace vehicles having light weight and reduced fuel consumption [1,2]. In-situ composite fabrication techniques seem to be gaining attraction since it overcomes several issues (non-uniformity of particle distribution, poor wettability and weak interfaces) associated with composites produced by conventional processing techniques [3,4]. In general, in-situ MMCs consist of ultra fine-sized and thermodynamically stable ceramic particles, clean and unoxidized ceramic-metal interfaces with high interfacial strength, due to improved wettability. There exist several variants of in-situ processes. These include both liquid metallurgy, and solid state processing routes [5–]. Bhingole [7] added magnesium nitrate as oxygen supplying agent into the molten Mg-alloy and synthesized in-situ AZ91 matrix composites by in-situ reactive formation of hard MgO and Al2O3 particles. Despite the fact that numerous in-situ MMC processing routes are reported in the literature [5–], their reaction pathways and chemical kinetics are complex to understand. Sudarshan et al. [11,12] developed a novel processing route to synthesize in-situ Mg-based MMCs by utilizing pyrolysis of polymer precursor within the molten Mg. Since polymer precursor contain all the constituents of ceramic phases within organic molecules itself, an in-situ pyrolysis aids in the conversion of polymer into ceramic particles without any chemical reaction between precursor and the host metal. However, they indentified two critical processing issues [11,12]: firstly the reaction between polymer precursor and magnesium melt results in the formation of brittle Mg2Si particles at pyrolysis temperature ranging from 800 to 1000 °C. This brittle Mg2Si phase impairs the ductility of resulting composite. Further, this leads to the reduction in the amount of polymer precursor available for generation of sub-micron sized SiCNO particles. Secondly, most of the polymer derived ceramic (PDC) particles were pushed away by the solidification front and as a result segregated at the grain boundaries. Such grain boundary segregation limits the enhancement in the mechanical properties of the final in-situ MMCs.
The nature and magnitude of interactive force between the ceramic particles and solidification front determines the nature of particle distribution in the final MMCs [13]. If the net force is attractive, the particles could be trapped within grain resulting in uniform dispersion where as repulsive forces leads to segregation of particles at the grain boundaries. Rapid solidification processing [14] and disintegrated melt technique [15] minimize the grain boundary segregation due to higher cooling rate to certain extent; however, it is difficult to understand and control the nature of interactive forces, and the solidification variables preciously during large-scale manufacturing of cast composites. Secondary process such as hot extrusion is more often used to bring about uniformity in particle distribution and to eliminate /minimize casting defects in the composites [16]. However, under non optimal conditions this may lead to some level of texture and anisotropy in the particulate MMCs.
In the present investigation, friction stir processing (FSP), one of the well-established solid state processing technique [17] has been explored as a technique to achieve both grain refinement and uniform distribution of reinforced particle distribution in the cast composites. These improvements have accrued due to intense material flow and dynamic recrystallization (DRX) which are the main attributes of FSP. Therefore, FSP can be utilized to minimize the grain boundary segregation of particles in the as-cast in-situ MMCs. In addition, FSP can also be used to eliminate/minimize casting defects akin to hotextrusion process. Arora et al. [18] observed the formation of in-situ nano-particles during FSP of AE42 Mg-alloys. Ranjit [19] modified the as-cast microstructures of Al-TiC in-situ composites by FSP. Ajay et al. [20] achieved a five-fold increase in microhardness of Cu-based in-situ MMCs after introducing polymer precursor by multi-pass friction stir processing (FSP). In their work, since the pyrolysis temperature (800 °C) of polymer precursor is lower than the melting temperature of Cu matrix (1083 °C); in-situ pyrolysis can be performed by solid state FSP itself. However, for the case of Mg, liquid state processing is required to initiate the pyrolysis for the conversion of polymer in to ceramic phase as pyrolysis temperature (700– °C) is greater than the melting temperature of Mg (650 °C). Use of FSP process has not been reported for the light weight in-situ MMCs dispersed with polymer derived ceramic (PDC) particles to the best of our knowledge. The primary objective of the present paper is three-fold; (i) to minimize the formation of Mg2Si phase by lowering the process or pyrolysis temperature, and (ii) to achieve the uniform dispersion of PDC particles throughout the magnesium matrix via FSP and (iii) to investigate the microstructural evolution, strength properties and the basis of strengthening of two stage processed in-situ MMCs.
$$en!!
- همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
- ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
- در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.
مهسا فایل |
سایت دانلود فایل 