فایل ورد کامل ادغام داده های چندحسگر با شبکه های عصبی المان


در حال بارگذاری
10 جولای 2025
پاورپوینت
17870
3 بازدید
۷۹,۷۰۰ تومان
خرید

توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد

این مقاله، ترجمه شده یک مقاله مرجع و معتبر انگلیسی می باشد که به صورت بسیار عالی توسط متخصصین این رشته ترجمه شده است و به صورت فایل ورد (microsoft word) ارائه می گردد

متن داخلی مقاله بسیار عالی، پر محتوا و قابل درک می باشد و شما از استفاده ی آن بسیار لذت خواهید برد. ما عالی بودن این مقاله را تضمین می کنیم

فایل ورد این مقاله بسیار خوب تایپ شده و قابل کپی و ویرایش می باشد و تنظیمات آن نیز به صورت عالی انجام شده است؛ به همراه فایل ورد این مقاله یک فایل پاور پوینت نیز به شما ارئه خواهد شد که دارای یک قالب بسیار زیبا و تنظیمات نمایشی متعدد می باشد

توجه : در صورت مشاهده بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل می باشد و در فایل اصلی فایل ورد کامل ادغام داده های چندحسگر با شبکه های عصبی المان،به هیچ وجه بهم ریختگی وجود ندارد

تعداد صفحات این فایل: ۱۶ صفحه


بخشی از ترجمه :

چکیده

این مقاله یک سیستم مسیریابی را بر اساس شبکه عصبی مصنوعی (ANN) المان ارائه می دهد. عمل ترکیب داده ها حاصل از سنسورهای مختلف بوسیله ANN آموزشی درک شده است. تعیین موقعیت در فضا موضوعی غیر خطی است، از این رو هر نوع ANN را نمی توان برای این عمل بکار برد. ANN المان به علت ساخت و کاربرد موفق آن در مسائل غیر خطی که به پیشبینی نیازمندند، انتخاب شده است. شبکه المان از سه لایه تشکیل شده است. لایه ای از واحدهای لایه ای مخفی که به لایه مخفی متصل شده است. لایه حساس به متن ذخیره مقادیر واحدهای مخفی قبلی را قادر میسازد. با این لایه، پیشبینی در دستورات سلسه مراتبی ممکن می باشد. این امر تاثیر حافظه متنی است که اطلاعات حوادث قبلی در آن ذخیره میگردد. شبکه عصبی تک محوره استاندارد دیگری قادر به فراهم نمودن این نوع عملکرد نیست. سیستم متشکل از سنسورهای MEMS (سیستم های ریز الکترومکانیکی) می باشد که بر پایه IMU (واحد اندازه گیری لختی) استوار است. IMU از ژیروسکوپ ها، شتاب سنج ها و مغناطیس سنج هایی تشکیل شده که شتاب های سه بعدی خطی و نرخهای زاویه ای را ارائه می دهد. این یک مجموعه کلاسیک از سنسورها برای تعیین موقعیت فضایی است. این مطالعه نتایج کاربرد الگوریتم هایی برای تعیین موقعیت فضایی با استفاده از ANN المان را ارائه می دهد. نمونه داده های ANN آزمایشی حین تست پرواز کوادکوپتر جمع آوری گردید. این مقاله عملکرد اشکال مختلف ANN المان را ارائه میدهد. سیستم ارائه شده تجمیع آسان سایر سنسورها مانند دریافت کننده های GPS/GLONASS را ممکن می سازد.

– نتایج

نتایج بدست آمده نشان میدهد که فرضیات درست بوده اند. با مقایسه نتایج می توان نتیجه گرفت که مقادیر بدست آمده با استفاده از ANN چندان با محاسبات حاصل از الگوریتم AHRS تفاوتی ندارند. با این حال، با مقایسه مقادیر خروجی ANN و مقادیر محاسبه شده می توان خطای بزرگی را مشاهده نمود. این خطا به وسیله دینامیک بالای داده های ورودی شبکه عصبی حاصل شده است. مطالعات آینده به مجموعه داده های بیشتری برای فراگیری شبکه نیاز دارند. این نتایج نشان می دهند که می توانیم به طور موفقیت آمیزی ANN را به عنوان جایگزین محاسبات پیچیده استفاده کنیم. با این حال، باید تحقیق جامعی بر انتخاب پارامتری ANN انجام شود. تحقیقات آینده باید با سنسورهای اضافی مانند دریافت کننده های GPS و فشار سنج غنی گردد. این سنسورها دقت موقعیت یابی را بهبود می بخشند ، تحقیق را بسیار متنوع نموده و متغیرهای بیشتری را برای تحلیل ایجاد می نماید. همچنین برای مقایسه نتایج با انواع دیگر شبکه های عصبی مصنوعی برنامه ریزی شده است.

عنوان انگلیسی:Multisensor data fusion using Elman neural networks~~en~~

Abstract

The paper presents a navigation system based on Elman Artificial Neural Network (ANN). The task of data fusion from different sensors is realized by trained ANN. Determining position in space is an issue of nonlinear hence. Not every type of ANN is used for such a task. Choice of Elman ANN was dictated by its construction and successfully applications to nonlinear problems requiring prediction. Elman network is composed of three layers. Comprises a layer of hidden layer units context which is connected to the hidden layer. Context-sensitive layer allows for store the values of previous hidden units. With this layer prediction is possible in sequential order. This is the effect of contextual memory where information is stored about what it was before. This kind of functionality is not able to provide any other standard neural network unidirectional. The system consists of MEMS (Micro Electro-Mechanical Systems) sensors, which are based on IMU (Inertial Measurement Unit). IMU is composed from gyroscopes, accelerometers and magnetometers which provide three dimensional linear accelerations and angular rates. This is a classic set of sensors for determining the position in space. The study presents the results of the implementation of algorithms for determining the position in space using trained Elman ANN. The data samples to train ANN were collected during the test flight of Quadrocopter. Paper presents the performance for different configurations of Elman ANN. Presented system provides easy addition of other sensors e.g. GPS/GLONASS receiver.

$$en!!

  راهنمای خرید:
  • همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
  • ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
  • در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.