فایل ورد کامل تشخیص زود هنگام صرع با استفاده از ثبت نوری و برقی


در حال بارگذاری
10 جولای 2025
پاورپوینت
17870
4 بازدید
۷۹,۷۰۰ تومان
خرید

توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد

این مقاله، ترجمه شده یک مقاله مرجع و معتبر انگلیسی می باشد که به صورت بسیار عالی توسط متخصصین این رشته ترجمه شده است و به صورت فایل ورد (microsoft word) ارائه می گردد

متن داخلی مقاله بسیار عالی، پر محتوا و قابل درک می باشد و شما از استفاده ی آن بسیار لذت خواهید برد. ما عالی بودن این مقاله را تضمین می کنیم

فایل ورد این مقاله بسیار خوب تایپ شده و قابل کپی و ویرایش می باشد و تنظیمات آن نیز به صورت عالی انجام شده است؛ به همراه فایل ورد این مقاله یک فایل پاور پوینت نیز به شما ارئه خواهد شد که دارای یک قالب بسیار زیبا و تنظیمات نمایشی متعدد می باشد

توجه : در صورت مشاهده بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل می باشد و در فایل اصلی فایل ورد کامل تشخیص زود هنگام صرع با استفاده از ثبت نوری و برقی،به هیچ وجه بهم ریختگی وجود ندارد

تعداد صفحات این فایل: ۱۲ صفحه


بخشی از ترجمه :

چکیده

این مقاله، نتایج ابتدایی در مورد تشخیص حمله صرعی ارائه می‌دهد. ترکیب روش‌های طیف‌سنجی عملکردی نزدیک به مادون قرمز و الکتروآنسفالوگرام ، عملکرد بهتری نسبت به روش صرف EEG نشان می‌دهد. علاوه‌براین، بعضی نتایجی که پیش‌بینی می‌کند می‌توان حمله را تشخیص داد نیز ارائه شده است.

 

مقدمه

صرع جزء یکی از سه اختلال عصبی شایع است؛ این بیماری بعد از سکته مغزی و بیماری آلزایمر در رتبه سوم قرار دارد. تخمین زده شده میلیون نفر در سراسر جهان که حدود % از جمعیت جهان را تشکیل می‌دهد، از صرع رنج می‌برند. به طور متوسط سالانه مورد جدید شامل هزار نفر اضافه می‌شوند.

نتیجه گیری

اگر چه نتایج حاصل از مطالعه موردی قطعی نیست، اما جدول نشان می‌دهد که افزودن ویژگی‌های fNIRS به یک آشکارساز مبتنی بر EEG، عملکرد آن را به طور قابل توجهی بهبود می بخشد. علاوه براین براساس جدول و شکل ، تایید کردیم که اطلاعات موجود در fNIRS می‌تواند به تشخیص خیلی سریع‌تر حملات کمک کند.

با توجه به این نتایج امیدوارکننده، پژوهش‌های آتی ما در مورد به‌کارگیری این روش بر روی طبقه‌بندی‌کننده‌های دیگر و مجموعه داده‌های بزرگتر خواهد بود. همچنین بر استخراج ویژگی‌های جدیدتر و بهتر از سیگنال‌های fNIRS تمرکز خواهیم کرد و آنها را با ویژگی‌های استخراج شده از ثبت EEG ترکیب می‌کنیم. یکی از محدودیت‌های کار ما، عدم استفاده از الگوریتم انتخاب ویژگی است که اگر چه با توجه به نتایج امیدوار کننده تنها بر اساس استخراج دامنه سیگنال‌ها به عنوان ویژگی ممکن است مورد نیاز نباشد. در روش یادگیری ماشین ارائه شده، انتخاب پارامترهای بهینه مانند نوع هسته‌ی ماشین بردار پشتیبان و پارامترهای مرتبط با آن، تعداد نورون‌ها در لایه پنهان شبکه عصبی و همچنین فرآیند انتخاب ویژگی، در کار آتی بررسی خواهد شد.

عنوان انگلیسی:Detecting Epileptic Seizures in Advance Using Optical and Electrical Recordings~~en~~

Abstract

This paper presents preliminary results on epileptic seizure detection. Combination of functional Near Infrared Spectroscopy (fNIRS) and Electroencephalogram (EEG) recordings shows enhanced performance compare to EEG recordings alone. Moreover, some results concerning the anticipation at which a seizure can be detected are also presented.

 

INTRODUCTION

Epilepsy is one of the top three most common neurological disorders; it is just below strokes and Alzheimer disease [1]. It is estimated that 65 million people around the world suffer from epilepsy, which represents approximately 1% of the global population [2]. On average, 60 new cases of epilepsy 100,000 people emerge every year [2]–[].

CONCLUSIONS AND FUTURE WORK

Even though results from a case-study are not conclusive, Table 2 suggests that adding fNIRS features to an EEG-based detector will considerably improve its performance. Furthermore, from Table 3 and Fig. 5 we confirmed that information contained within fNIRS can help to detect seizures much earlier. Given these promising results, our future work will be to try the same approach with others classifiers on a larger sample. We will also focus on extracting new and better classification features out of the fNIRS signals and combine them with features extracted from EEG recordings. One limitation of our work is the lack of implementation of a feature selection algorithm, although it may not be needed, given the promising results using only the amplitude of signals as features. The choice of optimal parameters in our machine learning approaches, such as SVM kernel type and its associated parameters, number of neurons in the ANN hidden layer as well as a feature selection process will be tackled in future work.

$$en!!

  راهنمای خرید:
  • همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
  • ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
  • در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.