فایل ورد کامل سیستم های پیش بینی بر اساس شاخص های لرزه ای با استفاده از برنامه نویسی ژنتیکی و طبقه بندی AdaBoost


در حال بارگذاری
10 جولای 2025
پاورپوینت
17870
2 بازدید
۷۹,۷۰۰ تومان
خرید

توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد

این مقاله، ترجمه شده یک مقاله مرجع و معتبر انگلیسی می باشد که به صورت بسیار عالی توسط متخصصین این رشته ترجمه شده است و به صورت فایل ورد (microsoft word) ارائه می گردد

متن داخلی مقاله بسیار عالی، پر محتوا و قابل درک می باشد و شما از استفاده ی آن بسیار لذت خواهید برد. ما عالی بودن این مقاله را تضمین می کنیم

فایل ورد این مقاله بسیار خوب تایپ شده و قابل کپی و ویرایش می باشد و تنظیمات آن نیز به صورت عالی انجام شده است؛ به همراه فایل ورد این مقاله یک فایل پاور پوینت نیز به شما ارئه خواهد شد که دارای یک قالب بسیار زیبا و تنظیمات نمایشی متعدد می باشد

توجه : در صورت مشاهده بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل می باشد و در فایل اصلی فایل ورد کامل سیستم های پیش بینی بر اساس شاخص های لرزه ای با استفاده از برنامه نویسی ژنتیکی و طبقه بندی AdaBoost،به هیچ وجه بهم ریختگی وجود ندارد

تعداد صفحات این فایل: ۲۵ صفحه


بخشی از ترجمه :

چکیده

در این تحقیق ، یک سیستم پیش بینی زلزله با ترکیب شاخص های لرزه ای و برنامه نویسی ژنتیک (GP) و روش جمعی آدابوست (GP-AdaBoost) پیشنهاد شده است. شاخص های لرزه ای از طریق یک روش جدید محاسبه می شوند که در آن شاخص ها برای کسب حداکثر اطلاعات مرتبط با وضعبت لرزه ای منطقه محاسبه می شوند. شاخص های لرزه ای محاسبه شده با الکوریتم (GP-AdaBoost) برای داشتن سیستم پیش بینی زلزله (EP-GP-Boost) مورد استفاده قرار می گیرند. موقعیت و زمینه ها برای پیش بینی زلزله های با بزرگی ریشتر و بالاتر در روز قبل از زلزله فراهم آورده شده اند. مناطق هیندوکاش ، شیلی و کالیفرنیای جنوبی برای این آزمایش در نظر گرفته شده اند. (EP-GP-Boost) پیشرفت های قابل توجهی در پیش بینی زلزله دارد که دلیل آن ترکیب دو روش جستجوی GP و AdaBoost است. سیستم پیش بینی زلزله نشان دهنده بهبود نتایج در قالب دقت و ضریب همبستگی ماتیو برای سه منطقه در مقاسه با نتایج همزمان است.

 

– نتیجه گیری

در این تحقیق ، شاخص های لرزه ای با استفاده از روش EP-GPBoost مطرح شدند. یک روش منحصر بفرد ارائه شده است که در برگیرنده حداکثر اطلاعات در مورد یک منطقه از طریق محاسبه شاخص های لرزه ای موجود می باشند . این شاخص ها در برنامه هایی چون برنامه نویسی ژنتیک GP – آدابوست GP-Adaboost و با استفاده از روش های دسته بندی مطرح می شوند. روش GP-Adaboost یک روش منحصر بفرد و ترکیبی از توانایی های جستجو و تقویت GP و Adaboost است. مدل مبتنی بر GPAdaBoost آموزش داده می شود و برای موقعیت هیندو کاش – شیلی و جنوب کالیفرنیا آزمایش شده است. نتایج پیش بینی به دست آمده برای این مناطق نشان دهنده بهبود پیش بینی در مقایسه با تحقیقات موجود است. در نظر گرفتن حداکثر شاخص های لرزه ای موجود و استفاده از GP-AdaBoost باعث افزایش عملکرد پیش بینی زلزله در روز قبل از زلزله شده است. بنابراین، محاسبه پارامترهای مربوط به حداکثر لرزه ها و استفاده از GPAdaBoost باعث مطرح شدن و تقویت یک روش EPS جدید با نام EP-GPBoost. شده است. هدف تلاش های آینده یافتن شاخص های مناسب لرزه ای و استفاده از روش های یادگیری کامل برای پیش بینی زلزه می باشد.

عنوان انگلیسی:Seismic indicators based earthquake predictor system using Genetic Programming and AdaBoost classification~~en~~

Abstract

In this study an earthquake predictor system is proposed by combining seismic indicators along with Genetic Programming (GP) and AdaBoost (GP-AdaBoost) based ensemble method. Seismic indicators are computed through a novel methodology in which, the indicators are computed to obtain maximum information regarding seismic state of the region. The computed seismic indicators are used with GP-AdaBoost algorithm to develop an Earthquake Predictor system (EP-GPBoost). The setup has been arranged to provide predictions for earthquakes of magnitude 5.0 and above, fifteen days prior to the earthquake. The regions of Hindukush, Chile and Southern California are considered for experimentation. The EP-GPBoost has produced noticeable improvement in earthquake prediction due to collaboration of strong searching and boosting capabilities of GP and AdaBoost, respectively. The earthquake predictor system shows enhanced results in terms of accuracy, precision and Matthews Correlation Coefficient for the three considered regions in comparison to contemporary results.

 

– Conclusion

In this research, seismic indicators based EP-GPBoost has been proposed. A unique methodology is devised, which encompasses the maximum information of a region through the computation of available seismic indicators. These indicators are fed to a Genetic Programming (GP) and AdaBoost (GP-AdaBoost) based ensemble classification methodology. GP-AdaBoost is a unique combination of strong searching and boosting capabilities of GP and AdaBoost, respectively. The GPAdaBoost based model has been trained and tested for the Hindukush, Chile and Southern California regions. The obtained prediction results for these regions exhibit improvement when compared with already available studies. Inclusion of maximum available seismic indicators and application of GP-AdaBoost, has resulted to enhance earthquake prediction performance 15 days prior to an earthquake. Thus, the computation of maximum seismic parameters and employing of GPAdaBoost has developed a new and robust EPS, called as EP-GPBoost. Future efforts are aimed towards finding more suitable seismic indicators and application of deep learning methodologies for earthquake predictor system.

$$en!!

  راهنمای خرید:
  • همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
  • ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
  • در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.