فایل ورد کامل یک مبنا از تشخیص موسیقی نوری تا شناسایی موسیقی دستنویس
توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد
این مقاله، ترجمه شده یک مقاله مرجع و معتبر انگلیسی می باشد که به صورت بسیار عالی توسط متخصصین این رشته ترجمه شده است و به صورت فایل ورد (microsoft word) ارائه می گردد
متن داخلی مقاله بسیار عالی، پر محتوا و قابل درک می باشد و شما از استفاده ی آن بسیار لذت خواهید برد. ما عالی بودن این مقاله را تضمین می کنیم
فایل ورد این مقاله بسیار خوب تایپ شده و قابل کپی و ویرایش می باشد و تنظیمات آن نیز به صورت عالی انجام شده است؛ به همراه فایل ورد این مقاله یک فایل پاور پوینت نیز به شما ارئه خواهد شد که دارای یک قالب بسیار زیبا و تنظیمات نمایشی متعدد می باشد
توجه : در صورت مشاهده بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل می باشد و در فایل اصلی فایل ورد کامل یک مبنا از تشخیص موسیقی نوری تا شناسایی موسیقی دستنویس،به هیچ وجه بهم ریختگی وجود ندارد
تعداد صفحات این فایل: ۲۴ صفحه
بخشی از ترجمه :
چکیده
تشخیص موسیقی نوری (OMR) شاخه ای از تجزیه و تحلیل تصویری سند محسوب می شود که در پی تبدیل تصاویر پارتیتورها به صورتی قابل خوانش توسط کامپیوتر می باشد. به رغم دهه ها تحقیق، تشخیص پارتیتورهای دستنویس که در اصل نتنگاری غربی است، همچنان یک مساله مفتوح بوده و آثار معدودی وجود دارند که تنها بر روی مرحله خاصی از OMR تمرکز نموده اند. در اثر حاضر، ما سیستم کاملی از تشخیص موسیقی دستنویس (HMR) را بر اساس شبکه های عصبی بازگشتی پیچشی، داده افزایی و یادگیری انتقالی پیشنهاد نمودیم که می تواند به عنوان مبنایی برای جامعه تحقیقاتی عمل نماید.
– نتیجه گیری و کار آینده
در اثر حاضر، ما یک سیستم تشخیص موسیقی دستنویس (HMR) کاملی را براساس CNN و RNN، داده افزایی و یادگیری انتقالی از روی پارتیتورهای چاپی پیشنهاد نمودیم. نتایج تجربی استمرار این رویکرد را اثبات نموده و نشان دادند که خطوط حامل را می توان به صورت یک توالی و با استفاده از BLSTM تشخیص داد، ضمن آنکه بلوک پیچشی به عنوان یک استخراج کننده موثر ویژگی عمل می نماید. ما در ابتدا از طریق ارزیابی پارتیتورهای چاپی نشان دادیم معماری ما معتبر است. ثانیاً، ما نشان دادیم که روش ما تا حد زیادی از داده افزایی حاصل از پارتیتورهای دستنویس و نیز یادگیری انتقالی از پارتیتورهای چاپی بهره می برد. با توجه به آنکه ما تنها از صفحه از پایگاه داده های MUSCIMA++ در آزمایشات استفاده نمودیم، نتایج امیدوارکننده بودند. البته، تلفیق داده های دستنویس بیشتر که در سطح نماد نشانگذاری شدند به دستیابی نتایج بهتر کمک خواهد نمود.
عنوان انگلیسی:From Optical Music Recognition to Handwritten Music Recognition: A baseline~~en~~
Abstract
Optical Music Recognition (OMR) is the branch of document image analysis that aims to convert images of musical scores into a computer-readable format. Despite decades of research, the recognition of handwritten music scores, concretely the Western notation, is still an open problem, and the few existing works only focus on a specific stage of OMR. In this work, we propose a full Handwritten Music Recognition (HMR) system based on Convolutional Recurrent Neural Networks, data augmentation and transfer learning, that can serve as a baseline for the research community.
– Conclusions and future work
In this work, we have proposed a complete Handwritten Music Recognition (HMR) system based on CNNs and RNNs, data augmentation and transfer learning from printed scores. The experimental results have demonstrated the viability of this approach, showing that staves can be recognized as a sequence using BLSTMs, and also, that the convolutional block acts as an effective feature extractor. We have first demonstrated that our architecture is valid through the evaluation over printed scores. Secondly, we have showed that our methodology greatly benefits from data augmentation from handwritten scores as well as transfer learning from printed scores. Taking into account that we have used only 20 pages of the MUSCIMA++ database in the experiments, the results are promising. Of course, the incorporation of more handwritten data labeled at symbol level would help to obtain better results.
$$en!!
- همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
- ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
- در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.
مهسا فایل |
سایت دانلود فایل 