فایل ورد کامل پروژه الگوریتم ژنتیک فازی برای خوشه بندی داده های گروهی ۴۶ صفحه در word


در حال بارگذاری
10 جولای 2025
پاورپوینت
17870
4 بازدید
۷۹,۷۰۰ تومان
خرید

توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد

 فایل ورد کامل پروژه الگوریتم ژنتیک فازی برای خوشه بندی داده های گروهی ۴۶ صفحه در word دارای ۴۶ صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد فایل ورد کامل پروژه الگوریتم ژنتیک فازی برای خوشه بندی داده های گروهی ۴۶ صفحه در word  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

توجه : در صورت  مشاهده  بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل ورد می باشد و در فایل اصلی فایل ورد کامل پروژه الگوریتم ژنتیک فازی برای خوشه بندی داده های گروهی ۴۶ صفحه در word،به هیچ وجه بهم ریختگی وجود ندارد


بخشی از متن فایل ورد کامل پروژه الگوریتم ژنتیک فازی برای خوشه بندی داده های گروهی ۴۶ صفحه در word :

دانلود فایل ورد کامل پروژه الگوریتم ژنتیک فازی برای خوشه بندی داده های گروهی ۴۶ صفحه در word 42 صفحه با فرمت WORD

فایل ورد کامل پروژه الگوریتم ژنتیک فازی برای خوشه بندی داده های گروهی ۴۶ صفحه در word
فهرست مطالب

چکیده

مقدمه

مروری بر روش های قبل

الگوریتمk-means Hard

مثالی عددی از الگوریتم k-means

مقادیر مرکز های اولیه

فاصله بین مراکز و داده ها

خوشه بندی داده ها

تعیین مراکز

فاصله مراکز- داده ها

خوشه بندی داده ها

تعیین مراکز

فاصله مراکز- داده ها

خوشه بندی داده ها

الگوریتم Clustering (FCM) Fuzzy c-Means

Hard k-Modes الگوریتم

الگوریتم Fuzzy k-Modes

الگوریتمGenetic fuzzy k-Modes

نمایش رشته ای

فرآیند مقدار دهی اولیه

الگوریتم مقداردهی اولیه

فرایند انتخاب

الگوریتم تولید جمعیت جدید

فرایند ادغام

الگوریتم ادغام

فرایند جهش

پروسه جهش

معیار توقف

آزمایش ها

معیار کیفیت خوشه بندی

مجموعه داده

نتایج

نتیجه گیری

پیوست – کد برنامه

مراجع

چکیده

خوشه بندی روشی است که داده های یک مجموعه داده را به گروه یا خوشه تقسیم می کند . از مرسوم ترین روش های خوشه بندی،الگوریتم های خوشه بندی k-Means وfuzzy k-Means می باشند.این دو الگوریتم فقط روی داده های عددی عمل می کنند و به منظور رفع این محدودیت، الگوریتم های k-Modes و fuzzy k-Modes ارائه شدند که مجموعه داده های گروهی (دسته ای) را نیز خوشه بندی می کنند. . با این وجود، این الگوریتم ها ،شبیه همه روال های بهینه سازی دیگر که برای مینیمم عمومی یک تابع جستجو می کنند، احتمال گیر افتادن در یک مینیمم محلی وجود دارد. به منظوردستیابی به جوبب بهینه عمومی ، الگوریتم های تکاملی مانند ژنتیک و جدول جستجو با الگوریتم های مذکور ترکیب می شوند. در این پژوهش، الگوریتم ژنتیک ، GA، را با الگوریتم fuzzy k-Modes ترکیب شده ،بطوریکه عملگر ادغام به عنوان یک مرحله از الگوریتم fuzzy k-Modes تعریف می شود. آزمایش ها روی دو مجموعه داده واقعی انجام شده است تا همراه با مثال کارایی الگوریتم پیشنهادی را روشن نماید.

  راهنمای خرید:
  • همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
  • ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
  • در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.