پاورپوینت کامل ثابت بن قره صائبی حرانی ۱۲۰ اسلاید در PowerPoint
توجه : این فایل به صورت فایل power point (پاور پوینت) ارائه میگردد
پاورپوینت کامل ثابت بن قره صائبی حرانی ۱۲۰ اسلاید در PowerPoint دارای ۱۲۰ اسلاید می باشد و دارای تنظیمات کامل در PowerPoint می باشد و آماده ارائه یا چاپ است
شما با استفاده ازاین پاورپوینت میتوانید یک ارائه بسیارعالی و با شکوهی داشته باشید و همه حاضرین با اشتیاق به مطالب شما گوش خواهند داد.
لطفا نگران مطالب داخل پاورپوینت نباشید، مطالب داخل اسلاید ها بسیار ساده و قابل درک برای شما می باشد، ما عالی بودن این فایل رو تضمین می کنیم.
توجه : در صورت مشاهده بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل می باشد و در فایل اصلی پاورپوینت کامل ثابت بن قره صائبی حرانی ۱۲۰ اسلاید در PowerPoint،به هیچ وجه بهم ریختگی وجود ندارد
بخشی از متن پاورپوینت کامل ثابت بن قره صائبی حرانی ۱۲۰ اسلاید در PowerPoint :
ثابت بن قره
ثابت بن قرّه، ابوالحسن، مترجم و فیلسوف و ریاضیدان و منجم و طبیب قرن سوم بود.
فهرست مندرجات
۱ – شرح حال
۲ – تحصیلات
۳ – ورود به دستگاه حکومتی
۴ – دین
۵ – از دیدگاه دیگران
۶ – آثار علمی
۷ – آثار ریاضیات
۷.۱ – تألیفات
۷.۱.۱ – کتاب فی الشکل
۷.۱.۲ – مقاله فی استخراج اعداد المُتَحابَّهِ
۷.۱.۳ – المفروضات
۷.۱.۴ – کتاب فی مساحه قَطْعِ
۷.۱.۵ – مقاله فی مَساحَهِ المُجَسَّماتِ
۷.۱.۶ – فی مساحه الاشکال
۷.۱.۷ – کتاب الی المتعلمین
۷.۱.۸ – کتاب الی ابن وَهْب
۷.۱.۹ – کتاب فی عملِ شَکْلٍ مُجَسَّمٍ
۷.۱.۱۰ – مقالهٌ فی اَنَّ اَلْخَطَّیْنِ…
۷.۱.۱۱ – مقالهٌ فی برهانِ المصادرهِ
۷.۱.۱۲ – فی تصحیح مسائل الجبر
۷.۱.۱۳ – کتاب فی القطوع الاسطوانه
۷.۱.۱۴ – مسأله فی عمل المتوسطین
۷.۱.۱۵ – رساله فی الحُجه المنسوبه…
۷.۲ – ترجمه
۷.۲.۱ – کتاب المأخوذات لارشمیدس
۷.۲.۲ – شرح الشَکل الملقبِ بالقَطّاعِ
۷.۲.۳ – رساله فی الاصول الهندسیه
۷.۲.۴ – رساله فی الدوائر المُتَماسَّه
۷.۲.۵ – کتاب المخروطات لابولونیوس
۷.۲.۶ – المدخل الی علم العدد
۷.۳ – تصحیح
۷.۳.۱ – اصلاح ترجمه اصول اقلیدس
۷.۳.۲ – اصلاح کتاب المُعْطَیات لاقلیدس
۷.۳.۳ – کتاب الکره المتحرکه
۷.۳.۴ – ترجمه کتاب الکره
۷.۳.۵ – کتاب الْاُکَرْ لثاوذوسیوس
۸ – آثار نجومی
۸.۱ – کتاب فی آلاتِ الساعاتِ
۸.۲ – مقاله فی صفه الاشکال
۸.۳ – کتاب فی اِبْطاء الحرکه
۸.۴ – فی سَنَه الشمس
۸.۵ – رساله الی اسحاقِبن حنینِ
۸.۶ – فی حساب رُؤیَهِ الْاَهِلَّه
۸.۷ – تسهیل المجسطی
۸.۸ – رساله ثابت بن قره فی ذکر الافلاک
۸.۹ – قول فی ایضاح الوجه
۹ – احکام نجوم آثار عُلْوی و علوم طبیعی
۱۰ – مکانیک و فیزیک
۱۱ – مهارت در طب
۱۲ – آثار پزشکی
۱۳ – فهرست منابع
۱۴ – پانویس
۱۵ – منبع
شرح حال
در اغلب منابع سال ولادت وی ۲۲۱ ذکر شده
[۱] ابن ندیم، ج۱، ص۳۳۱.
[۲] علی بن یوسف قفطی، تاریخ الحکماء، و هو مختصر الزوزنی المسمی بالمنتخبات الملتقطات من کتاب اخبارالعلماء باخبارالحکماء،ص۱۱۵، چاپ لیپرت، لایپزیگ ۱۹۰۳
[۳] ابن خلّکان، ابن صاعد اندلسی، ج۱، ص۳۱۴، التعریف بطبقات الامم: تاریخ جهانی علوم و دانشمندان تا قرن پنجم هجری، چاپ غلامرضا جمشیدنژاد اول، تهران ۱۳۷۶ش.
اما به نوشته ابن ابی اُصَیبعه
[۴] ابن ابی اصیبعه، عیون الانباء فی طبقات الاطباء، ج۱، ص۲۹۷، چاپ نزار رضا، بیروت (۱۹۶۵).
وی در ۲۱ صفر ۲۱۱ در حَرّان (شهری در جنوب شرقی ترکیه کنونی) به دنیا آمده است.زبان مادری وی سریانی بود و یونانی و عربی را نیز بخوبی میدانست.وی از صابئین مقیم حرّان بود.
[۵] ابن ابی اصیبعه، عیون الانباء فی طبقات الاطباء، ج۱، ص۲۹۵، چاپ نزار رضا، بیروت (۱۹۶۵).
تحصیلات
ابتدا در حرّان به صرافی پرداخت، سپس به بغداد رفت و در آنجا فلسفه و ریاضیات و طب آموخت و در آنها مهارت یافت.
پس از بازگشت به وطن، عقاید و آرایی فلسفی مطرح کرد که مخالف عقاید هم کیشانش بود.
قاضی او را احضار کرد و فرمان داد که از عقایدش دست بر دارد.
او بظاهر پذیرفت اما پس از مدتی دوباره به همان عقاید بازگشت.
وقتی که وی را از ورود به مجمع هم کیشانش منع کردند، از حرّان به کَفَرتُوثا رفت و در آنجا اقامت گزید.
[۶] ابن خلّکان، ابن صاعد اندلسی، ج۱، ص۳۱۳، التعریف بطبقات الامم: تاریخ جهانی علوم و دانشمندان تا قرن پنجم هجری، چاپ غلامرضا جمشیدنژاد اول، تهران ۱۳۷۶ش.
[۷] عبداللّه بن اسعد یافعی، مرآه الجنان و عبره الیقظان، ج۲، ص۱۶۰، بیروت ۱۴۱۷/۱۹۹۷.
ورود به دستگاه حکومتی
محمد بن موسی ، ریاضیدان برجسته، در راه بازگشت از سرزمینهای روم به بغداد با ثابت آشنا شد، به فضل و تیزهوشی و فصاحت وی پی برد و او را با خود به بغداد آورد.
گفتهاند که ثابت نزد وی به کسب علوم پرداخته است.
محمد بن موسی او را به معتضد عباسی (حک :۲۷۹ـ۲۸۹) معرفی کرد و معتضد او را در زمره منجمان خویش قرار داد
[۸] ابن ندیم، ج۱، ص۳۳۱.
[۹] ابن ابی اصیبعه، عیون الانباء فی طبقات الاطباء، ج۱، ص۲۹۵، چاپ نزار رضا، بیروت (۱۹۶۵).
[۱۰] ابن عبری، تاریخ مختصرالدول، ج۱، ص۲۶۵، چاپ انطون صالحانی یسوعی، لبنان ۱۴۰۳/۱۹۸۳.
ثابت در دستگاه معتضد مقام والایی یافت، چنانکه اوقاتی طولانی با وی گفتگو میکرد.
[۱۱] علی بن یوسف قفطی، تاریخ الحکماء، و هو مختصر الزوزنی المسمی بالمنتخبات الملتقطات من کتاب اخبار العلماء باخبار الحکماء،ص۱۱۵-۱۱۶، چاپ لیپرت، لایپزیگ ۱۹۰۳
[۱۲] ابن عبری، تاریخ مختصرالدول، ج۱، ص۲۶۵، چاپ انطون صالحانی یسوعی، لبنان ۱۴۰۳/۱۹۸۳.
دین
بنا به قولی، ثابت مسلمان شد،
[۱۳] حسین نصر، علم در اسلام، ج۱، ص۱۱۰، به اهتمام احمد آرام، تهران ۱۳۶۶ ش.
اما هیچکدام از منابع اصیل قدیم به مسلمان شدن وی اشاره نکردهاند و حتی ابن کثیر
[۱۴] ابن کثیر، البدایه و النهایه، ج۱۱، ص۸۵، بیروت ۱۴۱۱/۱۹۹۰.
صریحاً گفته است که او بر دین صابئی باقی ماند.
ثابت در ۲۶ صفر ۲۸۸ درگذشت.
[۱۵] ابن ندیم، ج۱، ص۳۳۱.
[۱۶] علی بن یوسف قفطی، تاریخ الحکماء، و هو مختصر الزوزنی المسمی بالمنتخبات الملتقطات من کتاب اخبار العلماء باخبار الحکماء،ص۱۲۱-۱۲۲، چاپ لیپرت، لایپزیگ ۱۹۰۳
[۱۷] ابن خلّکان، ابن صاعد اندلسی، ج۱، ص۳۱۴، التعریف بطبقات الامم: تاریخ جهانی علوم و دانشمندان تا قرن پنجم هجری، چاپ غلامرضا جمشیدنژاد اول، تهران ۱۳۷۶ش.
[۱۸] عبداللّه بن اسعد یافعی، مرآه الجنان و عبره الیقظان، ج۲، ص۱۶۰، بیروت ۱۴۱۷/۱۹۹۷.
از دیدگاه دیگران
در منابع از تبحر ثابت در فلسفه سخن گفتهاند، چنانکه ابن کثیر
[۱۹] ابن کثیر، البدایه و النهایه، ج۱۱، ص۸۵، بیروت ۱۴۱۱/۱۹۹۰.
او را فیلسوف، و علی بن زید بیهقی
[۲۰] علی بن زید بیهقی، تتمه صوان الحکمه، ج۱، ص۳۳، چاپ رفیق العجم، بیروت ۱۹۹۴.
او را حکیمی فاضل دانسته است.
ابن ابی اصیبعه
[۲۱] ابن ابی اصیبعه، عیون الانباء فی طبقات الاطباء، ج۱، ص۲۹۵، چاپ نزار رضا، بیروت (۱۹۶۵).
وی را در جنبههای گوناگون فلسفه در زمان خود بی نظیر خوانده و ابن صاعد اندلسی
[۲۲] ابن خلّکان، ابن صاعد اندلسی،ص۱۹۳ التعریف بطبقات الامم: تاریخ جهانی علوم و دانشمندان تا قرن پنجم هجری، چاپ غلامرضا جمشیدنژاد اول، تهران ۱۳۷۶ش.
او را در ردیف یعقوب بن اسحاق کِنْدی و قُسطابن لوقا ، دو تن از عالم ترین افراد در فلسفه در جهان اسلام در قرن سوم، دانسته است.
از نظر ابوسلیمان سجستانی
[۲۳] ابوسلیمان سجستانی، صوان الحکمه و ثلاث رسائل، ج۱، ص۲۹۹، چاپ عبدالرحمان بدوی، تهران ۱۹۷۴، کارل بروکلمان، تاریخ الادب العربی، ج ۴، نقله الی العربیه یعقوب بکر و رمضان عبدالتواب، قاهره ۱۹۷۵.
منزلت علمی ثابت در حدی است که میتوان او را حد واسط یحیی نحوی و بُرُقْلُس دانست.
آثار علمی
با این همه، آثار فلسفی وی، بیشتر در شرح آثار فلسفی یونان (مانند آثار افلاطون و ارسطو ) است.
از جمله آثار اوست: جوامع کتاب آنولوطیقاالاولی، اختصار القاطیغوریاس و القیاس، جوامع کتاب باری ارمینیاس، کتابی در شرح سماع طبیعی، اختصار المنطق، و رساله فی حل رموز کتاب السیاسه لافلاطون
[۲۴] علی بن یوسف قفطی، تاریخ الحکماء، و هو مختصر الزوزنی المسمی بالمنتخبات الملتقطات من کتاب اخبار العلماء باخبار الحکماء، ص۱۱۶،چاپ لیپرت، لایپزیگ ۱۹۰۳
[۲۵] علی بن یوسف قفطی، تاریخ الحکماء، و هو مختصر الزوزنی المسمی بالمنتخبات الملتقطات من کتاب اخبار العلماء باخبار الحکماء،ص۱۱۸، چاپ لیپرت، لایپزیگ ۱۹۰۳
[۲۶] علی بن یوسف قفطی، تاریخ الحکماء، و هو مختصر الزوزنی المسمی بالمنتخبات الملتقطات من کتاب اخبار العلماء باخبار الحکماء،ص۱۲۰، چاپ لیپرت، لایپزیگ ۱۹۰۳
[۲۷] ابن ابی اصیبعه، عیون الانباء فی طبقات الاطباء، ج۱، ص۲۹۸ـ۳۰۰، چاپ نزار رضا، بیروت (۱۹۶۵).
همچنین ثابت مقالهای دارد که در بر دارنده پاسخهای وی به پرسشهای عیسی بن اُسَید نصرانی است.
[۲۸] ابن ابی اصیبعه، عیون الانباء فی طبقات الاطباء، ج۱، ص۲۹۹، چاپ نزار رضا، بیروت (۱۹۶۵).
ثابت بن قرّه در ریاضیات، نجوم ، مکانیک ، علوم طبیعی ، موسیقی ، پزشکی و دامپزشکی بیش از صد اثر داشته که نسخههای شماری از آنها باقیمانده است و برخی از آنها نیز تصحیح یا بررسی شدهاند.
بروکلمان نیز مقاله فی تلخیص ما أتی به ارسطوطالیس فی کتابه فی مابعدالطبیعه مماجری الامر فیه علی ساقه البرهان را جزو آثار ثابت ذکر کرده است.
ثابت در این اثر، آرای افلاطون و ارسطو را درباره ثبات جوهر نقد نموده است.
احتمالاً این مقاله همان اختصار کتاب مابعدالطبیعه است که ابن ابی اصیبعه
[۲۹] ابن ابی اصیبعه، عیون الانباء فی طبقات الاطباء، ج۱، ص۲۹۸، چاپ نزار رضا، بیروت (۱۹۶۵).
آن را از آثار ثابت دانسته است.
ثابت در علومی مانند منطق ، علم النفس ، اخلاق ، سیاست و طبقه بندی علوم و دستورزبان سریانی نیز آثاری دارد.
همچنین بنا به گزارش قفطی
[۳۰] علی بن یوسف قفطی، تاریخ الحکماء، و هو مختصر الزوزنی المسمی بالمنتخبات الملتقطات من کتاب اخبار العلماء باخبار الحکماء، ص۱۲۰،چاپ لیپرت، لایپزیگ ۱۹۰۳
و ابن ابی اصیبعه
[۳۱] ابن ابی اصیبعه، عیون الانباء فی طبقات الاطباء، ج۱، ص۳۰۰، چاپ نزار رضا، بیروت (۱۹۶۵).
او درباره دین صابئی و آداب و مراسم آن نیز رسالههایی به سریانی نوشته است.
او نخستین کسی است که در نجوم دوره اسلامی به اصلاح دستگاه بطلمیوسی پرداخت و نوشتههای وی، بویژه درباره ساعتهای آفتابی و رؤیت هلال ، از کهن ترین نمونهها در جهان اسلام به حساب میآید.
آثار نجومی ثابت مورد استفاده منجمان پس از او، مانند ابن یونس
[۳۲] ابن یونس، الزیج الکبیر الحاکمی، ج۱، ص۹۸، نسخه خطی کتابخانه لیدن، ش ۱۴۳ or، نسخه عکسی کتابخانه بنیاد دایره المعارف اسلامی.
و ابوریحان بیرونی
[۳۳] ابوریحان بیرونی، الاثار الباقیه عن القرون الخالیه، ج۲، ص۶۵۴، چاپ ادوارد زاخاو، لایپزیگ ۱۹۲۳.
و عبدالرحمان خازنی در الزیج المعتبر السنجری
[۳۴] عبدالرحمان خازنی، الزیج المعتبر السنجری،گ ۱۴۳ ر، نسخه خطی کتابخانه واتیکان، ش ۷۶۱ Arab، نسخه عکسی کتابخانه بنیاد دایره المعارف اسلامی
، قرار گرفته و برخی از آنها نیز به لاتینی ترجمه شده است.
آثار ریاضی ثابت، که بیشتر از دیگر آثار علمیاش بررسی شده، در قرون بعدی زمینه را برای کشفهای مهمی در زمینه اعداد حقیقی، حساب انتگرال، قضایای مثلثات کروی، معادلات، هندسه نااقلیدسی و محاسبه مقادیر حدّیِ مرتبط با حساب بی نهایت فراهم آورده است.
آثار ریاضیات
آثار ثابت بن قرّه در ریاضیات به سه دسته تقسیم میشود: تألیفات، ترجمهها، و تصحیحات.
تألیفات
کتاب فی الشکل
کتاب فی الشکل المُلقَّب بِالْقَطّاع؛ این اثر یکی از نخستین رسالهها در باره «شکل القَطّاع» (قضیه مِنِلائوس) در ریاضیات دوره اسلامی به شمار میآید.
ثابت در این رساله اثباتی بدیع از قضیه منلائوس در باره چهار ضلعی کامل کروی، که بطلمیوس از آن در حل مسائل نجوم کروی استفاده کرده، عرضه نموده و برای به دست آوردن صورتهای گوناگون این قضیه از نظریه خود درباره نسبتهای مرکّب استفاده کرده است.
گراردوس (ژرار) کرمونایی این رساله را به لاتینی ترجمه کرد و در ۱۳۰۳ ش /۱۹۲۴ بیورنبو این ترجمه را به همراه تحلیل مطالب آن منتشر نمود.
مقاله فی استخراج اعداد المُتَحابـَّهِ
مقاله فی استخراج اعداد المُتَحابـَّهِ بِسُهُولَهِ الْمَسْلَکِ الی ذلک؛ این رساله مشتمل بر ده قضیه در نظریه اعداد است، از جمله قضایایی درباره ساختن عددهای کامل ( عددهای مساوی با مجموع مقسومٌ علیههای حقیقیشان) که منطبق است با قضیه ۳۶ مقاله نهم اصول اقلیدس، ساختن عددهای زائد و ناقص (به ترتیب، بزرگ تر یا کوچک تر از مجموع مقسومٌ علیههایشان) و ساختن عددهای مُتَحابّ (جفت عددهایی که هر یک برابر با مجموع مقسومٌ علیههای دیگری باشد).
ثابت در مقدمه این رساله به پژوهشهای برخی ریاضیدانان یونانی درباره اعداد مذکور اشاره کرده است.
[۳۵] ابوالقاسم قربانی، فارسی نامه: در شرح احوال و آثار کمال الدین فارسی ریاضی دان و نورشناس ایرانی، ج۱، ص۴۷ـ۵۰، تهران ۱۳۶۳ ش.
ثابت نخستین ریاضیدان دوره اسلامی است که به اعداد متحاب پرداخته و این رابطه ریاضی را برای استخراج آنها مطرح کرده است: هرگاه عددهای ۱ – n 2 • ۳ = p و ۱- ۱- n 2•۳ = q و ۱- ۱- n 2 2 • ۹ = r اول باشند، آنگاه pq • n 2 = M و r • n 2= N عددهای متحاباند.
بر اساس رابطه بالا به ازای ۲ = n نخستین جفت از اعداد متحاب، ۲۲۰ و ۲۸۴ به دست میآیند.
[۳۶] ابوالقاسم قربانی، فارسی نامه: در شرح احوال و آثار کمال الدین فارسی ریاضی دان و نورشناس ایرانی، ج۱، ص۵۸، تهران ۱۳۶۳ ش.
در ۱۲۶۸/۱۸۵۲، وپکه خلاصه این رساله را به زبان فرانسه منتشر کرد.
سعیدان نیز متن عربی رساله را در ۱۳۵۶ ش /۱۹۷۷ چاپ کرد.
قربانی نیز از روی ترجمه سعیدان، مقدمه و خلاصهای از اثبات قضایای این اثر را به فارسی ترجمه کرده است.
[۳۷] ابوالقاسم قربانی، فارسی نامه: در شرح احوال و آثار کمال الدین فارسی ریاضی دان و نورشناس ایرانی، ج۱، ص۴۸ـ۵۹، تهران ۱۳۶۳ ش.
المفروضات
خواجه نصیرالدین طوسی این رساله را در مجموعه تحریرهای خود آورده است.
این کتاب شامل ۳۶ قضیه
[۳۸] محمد بن محمدنصیرالدین طوسی، مجموع الرسائل، حیدرآباد دکن ۱۳۵۸ـ۱۳۵۹.
در زمینه هندسه مقدّماتی و جبر هندسی، عمدتاً در زمینه مثلثها و دایرههاست.
[۳۹] محمد بن محمدنصیرالدین طوسی، مجموع الرسائل، ج۲، کتاب المفروضات لثابت بن قره، ص۱ـ۱۵، حیدرآباد دکن ۱۳۵۸ـ۱۳۵۹.
ثابت در قضیه بیستم این اثر، معادله + px = q 2 x را با استفاده از ترسیم هندسی (رسم یک پاره خط)، حل کرده است
[۴۰] محمد بن محمدنصیرالدین طوسی، مجموع الرسائل، ج۱، ص۹، حیدرآباد دکن ۱۳۵۸ـ۱۳۵۹.
ظاهراً ثابت این اثر را با اقتباس از کتاب مُعطَیاتِ (دادهها) اقلیدس تألیف نموده است.
کتاب فی مساحه قَطْعِ
کتاب فی مساحه قَطْعِ المخروطِ الذی یُسَمَّی المُکافی؛ در این رساله وی به روش محاسبه قطعهای از سهمی پرداخته و بدین منظور چند قضیه را درباره جمع بندی دنبالههای عددی (سِریها)، که در دوره اسلامی روش «اِفنا» نامیده میشد، اثبات کرده است.
او با به کارگیری این قضیهها و لحاظ کردن قطعه سهمی در یک چند ضلعی، مساحت قطعه سهمی را برابر۲۳ حاصل ضرب قاعده در ارتفاع آن به دست آورده است.
یوشکویچ اثبات کرده که محاسبه ثابت با محاسبه px dx ° a» هم ارز است.
سوتر این رساله را در ۱۳۳۴ـ ۱۳۳۵/ ۱۹۱۶ـ۱۹۱۷ به آلمانی ترجمه و تحلیل کرد.
مقاله فی مَساحَهِ المُجَسَّماتِ
مقاله فی مَساحَهِ المُجَسَّماتِ المُکافِیَه؛ این رساله درباره محاسبه حجم اجسامی است که از دَوَران قطعهای از سهمی حول قطر ( گنبد سهمی شکل) یا دَوَران سهمی حول قاعده (کره سهموی) حاصل میشوند.
ثابت در این رساله نیز با استفاده از قضایایی درباره جمع بندی دنبالههای عددی، حجم این اجسام را محاسبه کرده است.
فی مساحه الاشکال
فی مساحه الاشکال المسطحه و المجسَّمه؛ در باره محاسبه اندازه اشکال هندسی مسطح و اجسام فضایی بحث میکند.
کتاب الی المتعلمین
کتاب الی المتعلمین فی النسبه المؤلّفه؛ این رساله، که کتاب فی تألیف النسب نیز نامیده شده، در باره ترکیب نسبتهای مقادیر هندسی است.
ثابت در این رساله اصطلاحات حسابی را درباره مقادیر هندسی به کار برده و این بر خلاف روش ریاضیدانان یونان باستان است که از این امر پرهیز میکردند.
این رساله در تعمیم مفهوم عدد به عددهای حقیقی مثبت، در ریاضیات دوره اسلامی اهمیت داشته است.
ابوریحان بیرونی در راشیکات الهند ،
[۴۱] ابوریحان بیرونی، الاثار الباقیه عن القرون الخالیه، ج۱، ص۷، چاپ ادوارد زاخاو، لایپزیگ ۱۹۲۳.
بدون اشاره به نام این کتاب، نوشته است که ثابت کتابی درباره نسبتها دارد.
به احتمال بسیار منظور وی همین اثرِ ثابت بن قرّه بوده است.
روزنفلد و کارپووا در ۱۳۴۵ ش /۱۹۶۶ این رساله را به روسی ترجمه کردند.
کتاب الی ابن وَهْب
کتاب الی ابن وَهْب فی التأتی لاستخراج عملِ المسائلِ الهندسیه؛ این رساله به روشهای حل مسائل هندسی اختصاص دارد.
ثابت در این نوشته، بر خلاف اقلیدس ، برای حل مسائل، علاوه بر ترسیم مسائل هندسی و اثبات قضایا، به اندازه گیری نیز توجه کرده است.
سزگین در مقایسه و مقابلهای که کرده، این رساله و دو اثر دیگر ثابت را یک اثر دانسته است؛ آن دو اثر عبارتاند از: رساله فی العِلَّه الّتی لَها رَتَّبَ اُقلیدس اَشْکال کتابه ذلک الترتیب (در باره علت آنچه اقلیدس قواعد کتابش را به ردیف موجود مرتب کرده است) و رسالهٌ فیِ (اَنّهُ) کَیْفَ یَنْبَغی اَنْ یُسْلَکَ اِلی نَیْل المَطْلوبِ مِنَ المعانی الهَندسیه.
کتاب فی عملِ شَکْلٍ مُجَسَّمٍ
کتاب فی عملِ شَکْلٍ مُجَسَّمٍ ذی اَرْبَعَ عَشْرَهَ قاعدهً تُحیطُ به کُرَهٌ مَعْلُومَه؛ این رساله کوتاه، درباره روش محاط کردن یک چهارده وجهی متساوی الاضلاع درون یک کره است.
این رساله را بسل ـ هاگن به آلمانی ترجمه و همراه با متن عربی در ۱۳۱۱ ش/ ۱۹۳۲ منتشر کرده است.
مقالهٌ فی اَنَّ اَلْخَطَّیْنِ …
مقالهٌ فی اَنَّ اَلْخَطَّیْنِ اذا اُخرجا علی اَقَلْ من زاویتینِ قائمتینِ التَقَیا؛ در این اثر برای اثبات اصل موضوع پنجم اصول اقلیدس کوششهایی صورت گرفته است.
ملاحظات حرکتی را در هندسه مورد توجه قرار میدهد.
چنانکه ثابت در مقدمه اثر نیز حرکت را در هندسه لازم میداند.
وی این اصل موضوع را وضع میکند که در حرکت ساده اجسام (انتقال متوازی)، همه نقاط بر خطهای راست حرکت میکنند
[۴۲] خلیل جاویش، نظریه المتوازیات فی الهندسه الاسلامیه، ج۱، ص۶۹ـ۷۰، تونس ۱۹۸۸.
این اثر شامل هفت قضیه (شکل) است.
ثابت در قضیه چهارم وجود مستطیلی را اثبات کرده که در قضیه هفتم از آن برای اثبات اصل موضوع پنجم استفاده نموده است.
قضیه هفتم، که نسبت به قضایای دیگر اثبات مفصّل تری دارد، در باره این است که اگر دو خط با زاویه کمتر از قائمه (حاده) از رئوس خط سومی رسم شوند، یکدیگر را قطع میکنند.
نام اثر اول نیز از عنوان این قضیه گرفته شده است.
ظاهراً این اثر بر شروح ابن هیثم بر اصول اقلیدس مؤثر بوده است.
مقالهٌ فی برهانِ المصادرهِ
مقالهٌ فی برهانِ المصادرهِ المشهورهِ من اقلیدس؛ در این اثر به اثبات این موضوع میپردازد که اگر دو خط با زوایه کمتر از زاویه قائمه بر خط سومی فرود آیند، یکدیگر را قطع میکنند.
این اثر شامل پنج قضیه است.
ثابت در قضیه سوم وجود متوازی الاضلاعی را اثبات کرده که در قضیه پنجم از آن برای اثبات اصل موضوع پنجم استفاده نموده است.
این دو رساله به لحاظ موضوعی بسیار شبیه یکدیگرند.
قربانی
[۴۳] ابوالقاسم قربانی، ج۱، ص۲۰۶،ص۲۰۸، زندگینامه ریاضیدانان دوره اسلامی: از سده سوم تا سده یازدهم هجری، تهران ۱۳۶۵ ش.
به نادرست هر دو را یک رساله با دو عنوان متفاوت دانسته است.
خلیل جاویش متن تصحیح شده اثر اول را در کتاب نظریه المتوازیات فی الهندسه الاسلامیه
[۴۴] خلیل جاویش، نظریه المتوازیات فی الهندسه الاسلامیه، ج۱، ص۶۷ـ ۸۳، تونس ۱۹۸۸.
آورده، عبدالحمید صَبرَه نیز در ۱۳۴۶ ش/ ۱۹۶۷ ترجمه انگلیسی هر دو اثر را منتشر کرده است.
فی تصحیح مسائل الجبر
فی تصحیح مسائل الجبر بالبراهین الهندسیه؛ ثابت در این رساله با استفاده از ترسیمهای هندسی به حل معادلات+ px = q 2 x، + q = px 2 x و = px + q 2 x (0 > p و ۰ q> ) میپردازد.
حل معادله اول در کتاب المفروضات نیز آمده است.
وی در حل این معادلات از قضایای پنجم و ششم مقاله دوم اصول استفاده کرده است.
پل لوکی متن تصحیح شده این رساله را به همراه ترجمه آلمانی آن در ۱۳۲۰ ش /۱۹۴۱ منتشر کرده است.
کتاب فی القطوع الاسطوانه
کتاب فی القطوع الاسطوانه و بسیطها؛ شامل ۳۷ قضیه است که به بررسی مقاطع یک استوانه مستدیر مایل میپردازد.
در این رساله روش محاسبه بخشی از استوانه محدود به دو مقطع مستوی آمده است.
قضایای پانزدهم و هفدهم درباره تبدیل بیضی به دایرهای هم مساحت است.
ثابت مساحت بیضی به نیم قطرهای a و b را برابر مساحت دایرهای به شعاع ab به دست آورده است.
کارپووا و روزنفلد با پژوهش در این اثر نشان دادهاند که ثابت تبدیلهای هندسی را میشناخته و آنها را پیش از ریاضیدانان غربی به کار برده است.
مسأله فی عمل المتوسطین
مسأله فی عمل المتوسطین و قسمه زاویه معلومه بثلاثه اقسام متساویه؛ ثابت در این رساله مسئله تثلیث زاویه و ساختن دو واسطه هندسی را که به معادلههای درجه سوم منجر میشود، حل کرده است.
روش حل این مسائل، هم ارز روش ترسیمی «درج» ارشمیدس برای تثلیث زاویه است.
به عقیده وپکه، راه حل ثابت بسیار شبیه راه حل پاپوسِ اسکندرانی است.
رساله فی الحُجه المنسوبه…
رساله فی الحُجه المنسوبه الی سقراط فی المربع و قُطرِه؛ ثابت استدلال افلاطون را در منو درباره قضیه فیثاغورس در مثلث قائم الزاویه بررسی، و سه اثبات جدید عرضه کرده است.
همچنین برای قضیه فیثاغورس در حالت عمومی اثباتی را مطرح نموده است: هرگاه در مثلث ABC دو خط از رأس B چنان رسم شود که دو مثلث متشابه ABE و BCD به وجود آید، آنگاه : = AC (AE + CD) 2 + BC 2 AB.
آیدین صاییلی این رساله را در ۱۳۳۷ـ ۱۳۳۸ ش/ ۱۹۵۸ به ترکی و در ۱۳۳۹ ش/ ۱۹۶۰ به انگلیسی بر گردانده است.
اثر دیگر ثابت مسأله اذا اُخرج فی دائرهٍ ضلعُالمثلث و ضلعُ المسدس فی جههٍ واحده عن المرکز کانَ سطحُ الذی یُحازُ بَیْنَهُما مِثلَ سُدْس دائره، در باره این موضوع که مساحت بخشی از دایره که میان یک ضلع مثلث متساوی الاضلاع و ضلع یک شش ضلعی منتظم هر دو محاط درون یک دایره قرار میگیرد، برابر ۱۶ مساحت کل دایره است.
تنها نسخه خطی این رساله در کتابخانه مرکزی دانشگاه تهران موجود است.
[۴۵] محمدتقی دانش پژوه، فهرست نسخه های خطی کتابخانه دانشکده ادبیات،ص۴۴، در مجله دانشکده ادبیات دانشگاه تهران، سال ۱۳، ش ۱ (مهر ۱۳۴۴)
[۴۶] محمدتقی دانش پژوه، فهرست نسخه های خطی کتابخانه دانشکده ادبیات،ص۹۷، در مجله دانشکده ادبیات دانشگاه تهران، سال ۱۳، ش ۱ (مهر ۱۳۴۴)
ترجمه
افزون بر کتابهای مذکور، ثابت برخی آثار ریاضی یونانی را به عربی ترجمه و برخی ترجمهها را اصلاح کرده است.
ترجمههای ثابت در همین زمینه عبارتاند از:
کتاب المأخوذات لارشمیدس
این کتاب شامل پانزده قضیه در هندسه است.
به نوشته نصیرالدین طوسی ،
[۴۷] محمد بن محمدنصیرالدین طوسی، مجموع الرسائل، ج۲، کتاب المأخوذات لارشمیدس، ص۲، حیدرآباد دکن ۱۳۵۸ـ۱۳۵۹.
ریاضیدان ایرانی علی بن احمد نسوی (متوفی ح۴۷۳) تفسیری بر ترجمه ثابت نگاشته و طوسی با استفاده از تفسیر نسوی آن را تحریر کرده است.
[۴۸] محمد بن محمدنصیرالدین طوسی، مجموع الرسائل، ج۲، کتاب المأخوذات لارشمیدس، ص۲ـ۱۷، حیدرآباد دکن ۱۳۵۸ـ۱۳۵۹.
شرح الشَکل الملقبِ بالقَطّاعِ
شرح الشَکل الملقبِ بالقَطّاعِ من کتابِ المجسطی؛ درباره شکل قَطّاع در مجسطی بطلمیوس. ازاین رساله تک نسخهای در کتابخانه آستان قدس رضوی موجود است.
[۴۹] ابوالقاسم قربانی، زندگینامه ریاضیدانان دوره اسلامی: از سده سوم تا سده یازدهم هجری، ج۱، ص۲۰۸، تهران ۱۳۶۵ ش.
[۵۰] احمد گلچین معانی، فهرست کتب خطی کتابخانه آستان قدس رضوی، ج۱، ص۳۴۳ـ ۳۴۴، ج ۸، مشهد ۱۳۵۰ ش.
رساله فی الاصول الهندسیه
رسالهای شامل بیست قضیه درباره مثلثها و دوایر که به ارشمیدس منسوب است.
رساله فی الدوائر ال
راهنمای خرید:
- همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
- ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
- در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.
- همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
- ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
- در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.
مهسا فایل |
سایت دانلود فایل 