پاورپوینت کامل Chapter 24: Advanced Data Types and New Applications 51 اسلاید در PowerPoint


در حال بارگذاری
10 جولای 2025
پاورپوینت
17870
2 بازدید
۷۹,۷۰۰ تومان
خرید

توجه : این فایل به صورت فایل power point (پاور پوینت) ارائه میگردد

 پاورپوینت کامل Chapter 24: Advanced Data Types and New Applications 51 اسلاید در PowerPoint دارای ۵۱ اسلاید می باشد و دارای تنظیمات کامل در PowerPoint می باشد و آماده ارائه یا چاپ است

شما با استفاده ازاین پاورپوینت میتوانید یک ارائه بسیارعالی و با شکوهی داشته باشید و همه حاضرین با اشتیاق به مطالب شما گوش خواهند داد.

لطفا نگران مطالب داخل پاورپوینت نباشید، مطالب داخل اسلاید ها بسیار ساده و قابل درک برای شما می باشد، ما عالی بودن این فایل رو تضمین می کنیم.

توجه : در صورت  مشاهده  بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل می باشد و در فایل اصلی پاورپوینت کامل Chapter 24: Advanced Data Types and New Applications 51 اسلاید در PowerPoint،به هیچ وجه بهم ریختگی وجود ندارد


بخشی از مطالب داخلی اسلاید ها

پاورپوینت کامل Chapter 24: Advanced Data Types and New Applications 51 اسلاید در PowerPoint

اسلاید ۴: ۴Time Specification in SQL-92date: four digits for the year (1–9999), two digits for the month (1–12), and two digits for the date (1–31).time: two digits for the hour, two digits for the minute, and two digits for the second, plus optional fractional digits.timestamp: the fields of date and time, with six fractional digits for the seconds field.Times are specified in the Universal Coordinated Time, abbreviated UTC (from the French); supports time with time zone.interval: refers to a period of time (e.g., 2 days and 5 hours), without specifying a particular time when this period starts; could more accurately be termed a span.

اسلاید ۵: ۵Temporal Query LanguagesPredicates precedes, overlaps, and contains on time intervals.Intersect can be applied on two intervals, to give a single (possibly empty) interval; the union of two intervals may or may not be a single interval.A snapshot of a temporal relation at time t consists of the tuples that are valid at time t, with the time-interval attributes projected out. Temporal selection: involves time attributesTemporal projection: the tuples in the projection inherit their time-intervals from the tuples in the original relation.Temporal join: the time-interval of a tuple in the result is the intersection of the time-intervals of the tuples from which it is derived. It intersection is empty, tuple is discarded from join.

اسلاید ۶: ۶Temporal Query Languages (Cont.)Functional dependencies must be used with care: adding a time field may invalidate functional dependency A temporal functional dependency x Y holds on a relation schema R if, for all legal instances r of R, all snapshots of r satisfy the functional dependency X Y.SQL:1999 Part 7 (SQL/Temporal) is a proposed extension to SQL:1999 to improve support of temporal data.

اسلاید ۷: ۷Spatial and Geographic Databases

اسلاید ۸: ۸Spatial and Geographic DatabasesSpatial databases store information related to spatial locations, and support efficient storage, indexing and querying of spatial data.Special purpose index structures are important for accessing spatial data, and for processing spatial join puter Aided Design (CAD) databases store design information about how objects are constructed E.g.: designs of buildings, aircraft, layouts of integrated-circuitsGeographic databases store geographic information (e.g., maps): often called geographic information systems or GIS.

اسلاید ۹: ۹Represented of Geometric InformationVarious geometric constructs can be represented in a database in a normalized fashion.Represent a line segment by the coordinates of its endpoints.Approximate a curve by partitioning it into a sequence of segmentsCreate a list of vertices in order, orRepresent each segment as a separate tuple that also carries with it the identifier of the curve (2D features such as roads).Closed polygonsList of vertices in order, starting vertex is the same as the ending vertex, orRepresent boundary edges as separate tuples, with each containing identifier of the polygon, orUse triangulation — divide polygon into trianglesNote the polygon identifier with each of its triangles.

اسلاید ۱۰: ۱۰Representation of Geometric Constructs

اسلاید ۱۱: ۱۱Representation of Geometric Information (Cont.)Representation of points and line segment in 3-D similar to 2-D, except that points have an extra z componentRepresent arbitrary polyhedra by dividing them into tetrahedrons, like triangulating polygons.Alternative: List their faces, each of which is a polygon, along with an indication of which side of the face is inside the polyhedron.

اسلاید ۱۲: ۱۲Design DatabasesRepresent design components as objects (generally geometric objects); the connections between the objects indicate how the design is structured.Simple two-dimensional objects: points, lines, triangles, rectangles, pplex two-dimensional objects: formed from simple objects via union, intersection, and difference opeplex three-dimensional objects: formed from simpler objects such as spheres, cylinders, and cuboids, by union, intersection, and difference operations.Wireframe models represent three-dimensional surfaces as a set of simpler objects.

اسلاید ۱۳: ۱۳Representation of Geometric ConstructsDesign databases also store non-spatial information about objects (e.g., construction material, color, etc.)Spatial integrity constraints are important.E.g., pipes should not intersect, wires should not be too close to each other, etc.(a) Difference of cylinders(b) Union of cylinders

اسلاید ۱۴: ۱۴Geographic DataRaster data consist of bit maps or pixel maps, in two or more dimensions.Example 2-D raster image: satellite image of cloud cover, where each pixel stores the cloud visibility in a particular area.Additional dimensions might include the temperature at different altitudes at different regions, or measurements taken at different points in time.Design databases generally do not store raster data.

اسلاید ۱۵: ۱۵Geographic Data (Cont.)Vector data are constructed from basic geometric objects: points, line segments, triangles, and other polygons in two dimensions, and cylinders, speheres, cuboids, and other polyhedrons in three dimensions.Vector format often used to represent map data.Roads can be considered as two-dimensional and represented by lines and curves.Some features, such as rivers, may be represented either as complex curves or as complex polygons, depending on whether their width is relevant.Features such as regions and lakes can be depicted as polygons.

اسلاید ۱۶: ۱۶Applications of Geographic DataExamples of geographic datamap data for vehicle navigationdistribution network information for power, telephones, water supply, and sewageVehicle navigation systems store information about roads and services for the use of drivers:Spatial data: e.g, road/restaurant/gas-station coordinatesNon-spatial data: e.g., one-way streets, speed limits, traffic congestionGlobal Positioning System (GPS) unit – utilizes information broadcast from GPS satellites to find the current location of user with an accuracy of tens of meters.increasingly used in vehicle navigation systems as well as utility maintenance applications.

اسلاید ۱۷: ۱۷Spatial QueriesNearness queries request objects that lie near a specified location.Nearest neighbor queries, given a point or an object, find the nearest object that satisfies given conditions.Region queries deal with spatial regions. e.g., ask for objects that lie partially or fully inside a specified region.Queries that compute intersections or unions of regions.Spatial join of two spatial relations with the location playing the role of join attribute.

اسلاید ۱۸: ۱۸Spatial Queries (Cont.)Spatial data is typically queried using a graphical query language; results are also displayed in a graphical manner.Graphical interface constitutes the front-endExtensions of SQL with abstract data types, such as lines, polygons and bit maps, have been proposed to interface with back-end.allows relational databases to store and retrieve spatial informationQueries can use spatial conditions (e.g. contains or overlaps).queries can mix spatial and nonspatial conditions

اسلاید ۱۹: ۱۹Indexing of Spatial Datak-d tree – early structure used for indexing in multiple dimensions.Each level of a k-d tree partitions the space into two.choose one dimension for partitioning at the root level of the tree.choose another dimensions for partitioning in nodes at the next level and so on

  راهنمای خرید:
  • همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
  • ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
  • در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.