فایل ورد کامل استفاده از شبکه های عصبی موجی فازی تابعی ترکیبی با یک الگوریتم بهینه سازی مبتنی بر تدریس – یادگیری برای تشخیص بیماری پزشکی


در حال بارگذاری
10 جولای 2025
پاورپوینت
17870
7 بازدید
۷۹,۷۰۰ تومان
خرید

توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد

این مقاله، ترجمه شده یک مقاله مرجع و معتبر انگلیسی می باشد که به صورت بسیار عالی توسط متخصصین این رشته ترجمه شده است و به صورت فایل ورد (microsoft word) ارائه می گردد

متن داخلی مقاله بسیار عالی، پر محتوا و قابل درک می باشد و شما از استفاده ی آن بسیار لذت خواهید برد. ما عالی بودن این مقاله را تضمین می کنیم

فایل ورد این مقاله بسیار خوب تایپ شده و قابل کپی و ویرایش می باشد و تنظیمات آن نیز به صورت عالی انجام شده است؛ به همراه فایل ورد این مقاله یک فایل پاور پوینت نیز به شما ارئه خواهد شد که دارای یک قالب بسیار زیبا و تنظیمات نمایشی متعدد می باشد

توجه : در صورت مشاهده بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل می باشد و در فایل اصلی فایل ورد کامل استفاده از شبکه های عصبی موجی فازی تابعی ترکیبی با یک الگوریتم بهینه سازی مبتنی بر تدریس – یادگیری برای تشخیص بیماری پزشکی،به هیچ وجه بهم ریختگی وجود ندارد

تعداد صفحات این فایل: ۶۳ صفحه


چکیده :

تشخیص صحیح بیماری پزشکی، یک مسئله مهم در دسته بندی تلقی می شود. هدف اصلی فرآیند دسته بندی، تعیین دسته ای است که یک الگوی خاص به آن تعلق دارد. در این مقاله یک روش دسته بندی جدید برمبنای ترکیبی از الگوریتم بهینه سازی مبتنی بر تدریس – یادگیری (TLBO) و شبکه عصبی موجی فازی (FWNN) با شبکه عصبی ارتباطی تابعی (FLNN)، پیشنهاد می شود. به علاوه، از الگوریتم TLBO برای راه اندازی شبکه عصبی موجی فازی تابعی ترکیبی جدید (FFWNN) و بهینه سازی پارامترهای یادگیری که عبارتند از وزن، اتساع و ترجمه، استفاده می شود. برای ارزیابی عملکرد روش پیشنهادی، از ۵ سری داده پزشکی استاندارد استفاده شد: سرطان سینه، بیماری قلبی، هپاتیت، دیابت پیمای هندی و آپاندیس. کارآیی روش پیشنهادی با استفاده از اعتبارسنجی تقاطعی ۵ باره و اعتبارسنجی تقاطعی ۱۰ باره ازنظر مربع خطای میانگین، دقت دسته بندی، زمان اجرا، حساسیت، اختصاصی بودن و کاپا بررسی می شود. نتایج آزمایش نشان می دهند که کارآیی روش پیشنهادی برای مسئله های دسته بندی پزشکی برای سری های داده ای سرطان سینه، بیماری قلبی، هپاتیت، بیماری های پیمای هندی و آپاندیس ازنظر دقت پس از ۳۰ اجرا برای هر سری داده ای با پیچیدگی محاسباتی پایین، به ترتیب برابر با ۳۰۹/۹۸، ۱/۹۱، ۳۹/۹۱، ۶۷/۸۸ و ۵۱/۹۳ درصد می باشد. به علاوه، مشاهده شده است که روش پیشنهادی درمقایسه با عملکرد سایر روشهای یافت شده در مطالعات قبلی مرتبط، عملکرد کارآمدی دارد.

کلیدواژه ها: شبکه عصبی موجی فازی (FWNN) | شبکه عصبی ارتباطی تابعی (FLNN) | الگوریتم بهینه سازی مبتنی بر تدریس- یادگیری (TLBO) | شبکه عصبی موجی فازی تابعی (FFWNN)

عنوان انگلیسی:

Utilizing hybrid functional fuzzy wavelet neural networks with a teaching learning-based optimization algorithm for medical disease diagnosis

~~en~~ writers :

Jamal Salahaldeen Majeed Alneamya, Zakaria A: Hameed Alnaishb,*, S:Z: Mohd Hashimc, Rahma A: Hamed Alnaish

Accurate medical disease diagnosis is considered to be an important classification problem. The main goal of the
classification process is to determine the class to which a certain pattern belongs. In this article, a new classification technique based on a combination of The Teaching Learning-Based Optimization (TLBO) algorithm and
Fuzzy Wavelet Neural Network (FWNN) with Functional Link Neural Network (FLNN) is proposed. In addition,
the TLBO algorithm is utilized for training the new hybrid Functional Fuzzy Wavelet Neural Network (FFWNN)
and optimizing the learning parameters, which are weights, dilation and translation. To evaluate the performance of the proposed method, five standard medical datasets were used: Breast Cancer, Heart Disease,
Hepatitis, Pima-Indian diabetes and Appendicitis. The efficiency of the proposed method is evaluated using 5-
fold cross-validation and 10-fold cross-validation in terms of mean square error (MSE), classification accuracy,
running time, sensitivity, specificity and kappa. The experimental results show that the efficiency of the proposed method for the medical classification problems is 98.309%, 91.1%, 91.39%, 88.67% and 93.51% for the
Breast Cancer, Heart Disease, Hepatitis, Pima-Indian diabetes and Appendicitis datasets, respectively, in terms of
accuracy after 30 runs for each dataset with low computational complexity. In addition, it has been observed
that the proposed method has efficient performance compared with the performance of other methods found in
the related previous studies.

Keywords: Fuzzy wavelet neural network (FWNN) | Functional link neural network (FLNN) | Teaching learning-based optimization | algorithm (TLBO) | Functional fuzzy wavelet neural network | (FFWNN)

$$en!!

  راهنمای خرید:
  • همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
  • ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
  • در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.