فایل ورد کامل تشخیص و شناسایی ترافیک بر اساس شبکههای پیچشی هرمی
توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد
این مقاله، ترجمه شده یک مقاله مرجع و معتبر انگلیسی می باشد که به صورت بسیار عالی توسط متخصصین این رشته ترجمه شده است و به صورت فایل ورد (microsoft word) ارائه می گردد
متن داخلی مقاله بسیار عالی، پر محتوا و قابل درک می باشد و شما از استفاده ی آن بسیار لذت خواهید برد. ما عالی بودن این مقاله را تضمین می کنیم
فایل ورد این مقاله بسیار خوب تایپ شده و قابل کپی و ویرایش می باشد و تنظیمات آن نیز به صورت عالی انجام شده است؛ به همراه فایل ورد این مقاله یک فایل پاور پوینت نیز به شما ارئه خواهد شد که دارای یک قالب بسیار زیبا و تنظیمات نمایشی متعدد می باشد
توجه : در صورت مشاهده بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل می باشد و در فایل اصلی فایل ورد کامل تشخیص و شناسایی ترافیک بر اساس شبکههای پیچشی هرمی،به هیچ وجه بهم ریختگی وجود ندارد
تعداد صفحات این فایل: ۳۲ صفحه
چکیده :
با توسعه فناوری بدونراننده، ما به شدت نیاز به روشی برای درک صحنههای ترافیکی داریم. با این حال هنوز شناسایی علائم راهنمایی و رانندگی به دلیل مقیاس کوچک این نشانهها در تصاویر جهان واقعی، وظیفهای دشوار است. در سناریوهای پیچیده برخی علائم راهنمایی و رانندگی به دلیل شرایط آب و هوایی بسیار بد و شرایط نورپردازی میتواند بسیار اغفالکننده باشد. برای پیادهسازی یک سیستم تشخیص و شناسایی جامعتر ما یک شبکه دو مرحلهای را توسعه میدهیم. در مرحله پیشنهاد ناحیه، ما یک معماری عرمی ویژگی عمیق را با اتصالات جانبی به کار میگیریم که سبب میشود ویژگیهای معنایی شی کوچک حساستر شوند. در مرحله طبقهبندی شبکه پیچیشی که به شکل متراکم متصل شده است به منظور تقویت انتقال و تسهیم ویژگی مورد استفاده واقع شده است که این شبکه منجر به طبقهبندی دقیقتر با تعداد پارامترهای کمتر خواهد شد. ما بر روی بنچمارک تشخیص GTSDB و همچنین بر روی بنچمارک چالش برانگیز k100 Tsinghua-Tencent نیز آزمایش کردیم که برای اکثر شبکههای سنتی بسیار مشکل است. آزمایشات نشان میدهند که روش پیشنهادی ما عملکردی بسیار عالی را کسب میکند و از سایر جدیدترین روشها نیز بهتر است. پیادهسازی کد منبع در آدرس روبرو در دسترس است: https://github.com/derderking/Traffic-Sign.
کلیدواژهها: نشانه ترافیک | تشخیص شی | هرم ویژگی.
عنوان انگلیسی:
Traffic sign detection and recognition based on pyramidal convolutional networks
~~en~~ writers :
Zhenwen Liang1 • Jie Shao1 • Dongyang Zhang1 • Lianli Gao
With the development of driverless technology, we are in dire need of a method to understand traffic scenes. However, it is
still a difficult task to detect traffic signs because of the tiny scale of signs in real-world images. In complex scenarios, some
traffic signs could be very elusive due to the awful weather and lighting conditions. To implement a more comprehensive
detection and recognition system, we develop a two-stage network. At the region proposal stage, we adopt a deep feature
pyramid architecture with lateral connections, which makes the semantic feature of small object more sensitive. At the
classification stage, densely connected convolutional network is used to strengthen the feature transmission and multiplexed, which leads to more accurate classification with less number of parameters. We test on GTSDB detection
benchmark, as well as the challenging Tsinghua-Tencent 100K benchmark which is pretty difficult for most traditional
networks. Experiments show that our proposed method achieves a very great performance and surpasses the other state-ofthe-art methods. Implementation source code is available at https://github.com/derderking/Traffic-Sign.
Keywords: Traffic sign | Object detection | Feature pyramid
$$en!!
- همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
- ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
- در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.
مهسا فایل |
سایت دانلود فایل 