فایل ورد کامل پیش بینی شکستگی برای استخوان ران پروگزیمال با استفاده از مدل های اجزا محدود: تجزیه و تحلیل قسمت I-Linear


در حال بارگذاری
10 جولای 2025
پاورپوینت
17870
3 بازدید
۷۹,۷۰۰ تومان
خرید

توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد

این مقاله، ترجمه شده یک مقاله مرجع و معتبر انگلیسی می باشد که به صورت بسیار عالی توسط متخصصین این رشته ترجمه شده است و به صورت فایل ورد (microsoft word) ارائه می گردد

متن داخلی مقاله بسیار عالی، پر محتوا و قابل درک می باشد و شما از استفاده ی آن بسیار لذت خواهید برد. ما عالی بودن این مقاله را تضمین می کنیم

فایل ورد این مقاله بسیار خوب تایپ شده و قابل کپی و ویرایش می باشد و تنظیمات آن نیز به صورت عالی انجام شده است؛ به همراه فایل ورد این مقاله یک فایل پاور پوینت نیز به شما ارئه خواهد شد که دارای یک قالب بسیار زیبا و تنظیمات نمایشی متعدد می باشد

توجه : در صورت مشاهده بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل می باشد و در فایل اصلی فایل ورد کامل پیش بینی شکستگی برای استخوان ران پروگزیمال با استفاده از مدل های اجزا محدود: تجزیه و تحلیل قسمت I-Linear،به هیچ وجه بهم ریختگی وجود ندارد

تعداد صفحات این فایل: ۲۹ صفحه


بخشی از ترجمه :

بیش از ۹۰% از ۲۵۰۰۰۰ شکستگی مفصل ران که به صورت سالانه در ایالات متحده شکل می گیرد، در اثر سقوط در ارتفاع ایستایی می باشد. با این وجود، تنش های مرتبط با شکستگی فمور در اثر افتادن پیش از این مورد بررسی قرار نگرفته است. هدف ما استفاده از مدل های المان محدود سه بعدی از فمور پروگزیمال ( با حالات هندسی و ویژگی های مواد مبتنی بر مقطع نگاری های کامپیوتری کمی) برای مقایسه توزیع تنش برای حالت ایستایی با یک پا برای سقوط بر روی برآمدگی در بالا تنه به صورت جانبی می باشد. ما همچنین مایل هستیم تا ارتباط بین پیش بینی مدل در داده های کرنش سنجی در آزمایشگاه و بارگذاری حالت شکست را برای فمور جسدی که تحت این شرایط بارگذاری قرار گرفته است را مشخص کنیم. یکی دیگر از اهداف ، استفاده از مدل های پیش بینی برای مقایسه ی حساسیت مکان های مختلف تصویر برداری در فمور پروگزیمال می باشد که در پیش بینی های محیط طبیعی برای بررسی خطر شکستگی مفصل ران، مورد استفاده قرار می گیرد. در این دو بخش، مدل المان محدود خطی از دو فمور انسانی جسد بدون ارتباط با هم، ایجاد شده است. در بخش ۲ ، مدل ها توسعه پیدا می کند تا بتوان ویژگی های غیر خطی را برای استخوان های متراکم و اسفنجی ، بررسی کرد. در حالی که تطابق کمی بی داده های کرنش سنجی و پیش بینی های مدل وجود نداشت، توافق دقیقی بین داده های شکست در محیط آزمایشی و مدل خطی وجود دارد، به خصوص با استفاده از یک معیار شکست کرنش موثر ون میسز. شروع تسلیم ساختاری ( در ۲۲ و ۴ درصد) و بار در حالت شکستگی ( در ۸ نفر و ۵ درصد) ، برای دو فموری که تحت تست قرار داشت، به صورت صحیح پیش بینی شد. برای شبیه سازی ایستایی بر روی یک پا، بیشترین تنش ایجاد شده در قسمت میله ای فشرده ای در ناحیه ی زیر قسمت اتصال فمور و لگن قرار داشت. اما برای یک سقوط شبیه سازی شده، بیشترین تنش در قسمت برامدگی در بالای تنه استخوان ران مشاهده شد. مکان مثلث وارد معمولا برای ارزیابی پوکی استخوان قرار می گیرد اما در این شرایط خیلی تحت بارگذاری قرار نگرفته بود. این یافته ها نشان می دهد که ناحیه ی بالای تنه ی استخوان ران ممکن است حساس ترین مکان برای ارزیابی خطر شکستگی به دلیل سقوط باشد و ناحیه ی زیر قسمت اتصال فمور و لگن نیز ممکن است به دلیل فعالیت های مداوم و مکرر مانند راه رفتن، تنش بالایی را تحمل کنند.

 

مباحث

این مطالعه نشان می دهد که روش المان محدود برای تحلیل با ویژگی های هندسی و مواد ایجاد شده با استفاده از تکنیک های تصویر برداری مقطع نگاری کمی کامپیوتری می تواند روشی بسیار عالی برای تخمین مقاومت استخوان فمور پروگزیمال باشد. نتایج تحلیل ما به خوبی با نقاط تسلیم و رفتار نهایی مشاهده شده در آزمایشگاه تطابق دارد، اما تنش های سطحی پیش بینی شده ارتباط کمی با اندازه گیری های کرنش سنج ها دارد. کرنش های موثر ون میسز محاسبه شده بهترین شاخص از نقطه تسلیم و شکست استخوان می باشند و نقطه شکست استخوان را در بازه ی ۸ درصدی از بار های شکستگی آزمایشگاهی برای هر دو مورد محاسبه می کنند . شروع تسلیم ساختاری نیز در اثر شروع شکست در استخوان های اسفنجی ایجاد می شود و با استفاده از معیار شکست کرنش، تطابق خوبی با داده های آزمایشی داشت.

عنوان انگلیسی:Fracture Prediction for the Proximal Femur Using Finite Element Models: Part I-Linear Analysis~~en~~

Over 90 percent of the more than 250,000 hip fractures that occur annually in the United States are the result of falls from standing height. Despite this, the stresses associated with femora! fracture from a fall have not been investigated previous!y, Our objectives were to use three-dimensional finite element models of the proximal femur (with geometries and maTerial properties based direct Iv on quantitative computed tomography) to compare predicted stress distributions for one-legged stance and for a fall to the lateral greater trochanter. We also wished to test the correspondence between model predictions and in vitro strain gage data and failure loads for cadaveric femora subjected to these loading conditions. An additional goal was to use the model predictions to compare the sensitivity of several imaging sites in the proximal femur which are used for the in vivo prediction of hip fracture risk. In this first of two parts, linear finite element models of two unpaired human cadaveric femora were generated. In Part II, the models were extended to include nonlinear material properties for the cortical and trabecular bone. While there was poor correspondence between strain gage data and model predictions, there was excellent agreement between the in vitro failure data and the linear model, especially using a von Mises effective strain failure crilerion. Both Ihe ollset of structural yielding (within 22 and 4 percent) and the load at fracture (within 8 and 5 percent) were predicted accurately for the two femora tested. For the simulation of onelegged stance, the peak stresses occurred in the primary compressive ,rabeculae of the subcapital region. However, for a simulated fall, Ihe peak stresses were in Ihe inlertrochanleric region. The Ward’s triangle (basicervica/) site commonly used for the clinical assessment of osteoporosis was nol heavily loaded in either situation. These findings suggest that the intertrochanleric region may be the mOST sensitive site for the assessment of fracture risk due to a fall and the subcapita! region for fracture risk due to repetitive activities such as walking.

 

Discussion

This study demonstrates that the finite element method of analysis, with geometries and material properties generated by the noninvasive imaging technique quantitative computed tomography, can provide an excellent method for estimating the strength of the proximal femur. The results of our analyses compared well with the observed in vitro yield and ultimate bone behavior, however, the predicted surface stresses correlated poorly with direct strain gage measurements. The calculated von Mises effective strain provided the best indicator of both bone yield and failure, predicting bone failure to within 8 percent of the experimental fracture loads measured for both load cases. The onset of structural yielding was observed to result from the initiation of trabecular failure and was also predicted with good accuracy by using the strain failure criteria.

$$en!!

  راهنمای خرید:
  • همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
  • ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
  • در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.