فایل ورد کامل محاسبه عدد وینر و شاخص های هایپر وینر گراف های کیلی واحد


در حال بارگذاری
10 جولای 2025
پاورپوینت
17870
3 بازدید
۷۹,۷۰۰ تومان
خرید

توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد

این مقاله، ترجمه شده یک مقاله مرجع و معتبر انگلیسی می باشد که به صورت بسیار عالی توسط متخصصین این رشته ترجمه شده است و به صورت فایل ورد (microsoft word) ارائه می گردد

متن داخلی مقاله بسیار عالی، پر محتوا و قابل درک می باشد و شما از استفاده ی آن بسیار لذت خواهید برد. ما عالی بودن این مقاله را تضمین می کنیم

فایل ورد این مقاله بسیار خوب تایپ شده و قابل کپی و ویرایش می باشد و تنظیمات آن نیز به صورت عالی انجام شده است؛ به همراه فایل ورد این مقاله یک فایل پاور پوینت نیز به شما ارئه خواهد شد که دارای یک قالب بسیار زیبا و تنظیمات نمایشی متعدد می باشد

توجه : در صورت مشاهده بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل می باشد و در فایل اصلی فایل ورد کامل محاسبه عدد وینر و شاخص های هایپر وینر گراف های کیلی واحد،به هیچ وجه بهم ریختگی وجود ندارد

تعداد صفحات این فایل: ۰ صفحه


بخشی از ترجمه :

۱-مقدمه
فرض کنید که H یک گراف همبند با به ترتیب مجموعه رئوس و یال های V(H) and E(H), باشد. طبق معمول، فاصله بین رئوس U و V از H با d(u,v) نشان داده شده و به صورت تعداد یال ها در یک مسیر حداقل متصل به رئوس U و V تعریف می شود.
یک شاخص توپولوژیکی ، عدد حقیقی مربوط به گراف است. این بایستی از نظر ساختاری ثابت باشد. یعنی با اتومورفیسم گراف حفظ می شود. چندین شاخص توپولوژیکی تعریف شده اند و برخی از آن ها دارای کاربرد هایی به عنوان ابزاری برای مدل سازی خواص شیمیایی، دارویی و سایر حواص مولکولی می باشند. شاخص وینر W یکی از رایج ترین شاخص توپولوژیکی است. این برابر با مجموع فواصل بین همه جفت رئوس گراف متناظر (۱۱) است.

عنوان انگلیسی:Computing Wiener and hyper–Wiener indices of unitary Cayley graphs~~en~~

۱ INTRODUCTION

Let H be a connected graph with vertex and edge sets V(H) and E(H), respectively. As usual, the distance between the vertices u and v of H is denoted by d(u,v) and it is defined as the number of edges in a minimal path connecting the vertices u and v. A topological index is a real number related to a graph. It must be a structural invariant, i.e., it preserves by every graph automorphisms. There are several topological indices have been defined and many of them have found applications as means to model chemical, pharmaceutical and other properties of molecules. The Wiener index W is one of the most studied topological index, see for details [4,5]. It is equal to the sum of distances between all pairs of vertices of the respective graph,[11].

$$en!!

  راهنمای خرید:
  • همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
  • ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
  • در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.