فایل ورد کامل غشای کوپلیمری جدید ضد رسوب PVDF-g-THFMA ساخته شده توسط پلیمریزاسیون رادیکالی غیرفعال شده برگشت پذیر القا شده نوری با Cu (II)
توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد
این مقاله، ترجمه شده یک مقاله مرجع و معتبر انگلیسی می باشد که به صورت بسیار عالی توسط متخصصین این رشته ترجمه شده است و به صورت فایل ورد (microsoft word) ارائه می گردد
متن داخلی مقاله بسیار عالی، پر محتوا و قابل درک می باشد و شما از استفاده ی آن بسیار لذت خواهید برد. ما عالی بودن این مقاله را تضمین می کنیم
فایل ورد این مقاله بسیار خوب تایپ شده و قابل کپی و ویرایش می باشد و تنظیمات آن نیز به صورت عالی انجام شده است؛ به همراه فایل ورد این مقاله یک فایل پاور پوینت نیز به شما ارئه خواهد شد که دارای یک قالب بسیار زیبا و تنظیمات نمایشی متعدد می باشد
توجه : در صورت مشاهده بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل می باشد و در فایل اصلی فایل ورد کامل غشای کوپلیمری جدید ضد رسوب PVDF-g-THFMA ساخته شده توسط پلیمریزاسیون رادیکالی غیرفعال شده برگشت پذیر القا شده نوری با Cu (II)،به هیچ وجه بهم ریختگی وجود ندارد
تعداد صفحات این فایل: ۲۶ صفحه
بخشی از ترجمه :
بخشی از مقاله انگلیسیعنوان انگلیسی:Novel anti-fouling PVDF-g-THFMA copolymer membrane fabricated via photoinduced Cu(II)-mediated reversible deactivation radical polymerization~~en~~
Abstract
In this study, we fabricated a novel anti-fouling poly(vinylidene fluoride) (PVDF) membrane using a novel amphiphilic copolymer of PVDF grafted with tetrahydrofurfuryl methacrylate (PVDF-g-THFMA). This copolymer was synthesized via photoinduced Cu(II)-mediated reversible deactivation radical polymerization. The amphiphilic copolymer was characterized by 1H nuclear magnetic resonance and Fourier transform infrared spectroscopy. The morphology of the copolymer was examined using scanning electron microscopy. The permeability and hydrophilicity of the membranes were evaluated on the basis of their pure water flux and dynamic contact angles, respectively. The anti-fouling property of the membranes was evaluated by carrying out filtration using a bovine serum albumin (BSA) solution. The PVDF-g-THFMA copolymer membranes showed a pure flux of up to 293.9Lmh bar and a molecular weight cut off of 39.5kDa. After the filtration of the BSA solution, the PVDF-g-THFMA copolymer membrane was washed with deionized water and the recovery ratio of the pure water flux reached a value of 89.1%. The modified membrane showed good filtration performance and anti-fouling property.
Introduction
Among commercial polymers, poly(vinylidene fluoride) (PVDF) has received much attention as a membrane material owing to its excellent properties such as high mechanical strength, thermal stability, and outstanding chemical resistance to various organic solvents, acids, and bases [1–]. However, the commercialization of PVDF membranes is limited. The surface energy of PVDF is very low, leading to the poor wettability and strong hydrophobic nature of PVDF membranes. Because of their hydrophobic nature, PVDF membranes are impressionable while treating aqueous solutions containing proteins. This increases the cost of operation and decreases the lifetime of PVDF membranes.
Many efforts have been made to improve the hydrophilicity of PVDF membranes. Coating a hydrophilic layer on the surface of PVDF membranes [4], grafting PVDF via various means such as ultraviolet (UV) photo irradiation, plasma, high-energy irradiation, and “living”/controlled polymerization, e.g. atom transfer radical polymerization (ATRP), and reverse atom transfer radical polymerization (RATRP) [5– ], and introducing hydrophilic polymers [9], amphiphilic polymers, and inorganic nanoparticles into the membrane matrix have been proved to be effective in the modification of PVDF membranes [10–].
Over the past few years, photochemically initiated ATRP, which offers the advantages of both ATRP and photopolymerization, has been studied extensively [13, 14]. Using this method, PVDF copolymers with a predetermined molecular weight and narrow molecular weight distribution can be synthesized. Compared to ATRP, photoinduced ATRP involves lower activation energy, faster reaction speed, and lower reaction temperature [15]. Yagci and co-workers developed the photoinduced Cu(II)- mediated reversible deactivation radical polymerization (RDRP) method. Cu(II) is of the utmost importance for the polymerization process in this method [16–]. Over the past few years, photoinduced Cu(II)-mediated RDRP has received much attention and various modifications have been made to it [19]. In order to compensate for the unavoidable radical termination reactions in conventional ATRP, a high concentration of the Cu(I) catalyst is used. Cu(II)-mediated RDRP decreases the concentration of the copper catalyst used significantly without affecting the polymerization process. Compared to traditional reducing agents, light is an efficient and clean reducing agent for Cu(II). The light intensity reactor received can be changed by control the reaction equipment (the reactor was placed in it) size and polymerization time can be controlled through switching on or off light source. We can obtain polymer with certain grafting degree via control reaction equipment size and reaction time.[20]. The use of amphiphilic copolymers can improve the hydrophilicity of PVDF membranes in a single step during the membrane fabrication itself [21, 22]. Owing to their selfassembling ability, these copolymers impart a uniform pore size, narrow pore size distribution, and high water flux to PVDF membranes. The strong interactions between the bulk polymer and hydrophobic chains of amphiphilic copolymers can effectively increase their compatibility and stability in the PVDF membrane matrix [23, 24]. Amphiphilic copolymers such as PVDF grafted with poly(methyl methacrylate) (PVDF-g-PMAA), PVDF grafted with poly(hydroxyethyl methacrylate) (PVDF-gPHEMA), and PVDF grafted with poly(ethylene glycol) methyl ether methacrylate (PVDF-g-PEGMA) have been synthesized [25–]. PVDF membranes using these amphiphilic copolymers as additives show excellent hydrophilicity and anti-fouling property. Recently, amphiphilic copolymers such as PVDF-cochlorotrifluoroethylene)-graft-poly(methyl methacrylate) (P(VDF-co-CTFE)-gPMMA) have been synthesized via photoinduced Cu(II)-mediated RDRP [28]. Motivated by these studies, we developed a PVDF amphiphilic copolymer membrane in this study. During the synthesis of PVDF amphiphilic copolymer membranes, a large number of hydrophilic segments are transferred to the membrane surface, which then self-assemble into regular pores. As a result, such membranes show good anti-fouling property and high flux.
In this study, we synthesized a novel amphiphilic copolymer of PVDF grafted with tetrahydrofurfuryl methacrylate (PVDF-g-THFMA) via photoinduced Cu(II)-mediated RDRP (a variation of ATRP) [29]. This copolymer was used to develop an anti-fouling ultrafiltration PVDF membrane via nonsolvent-induced phase separation. In this study, THFMA was used to fabricate a PVDF grafting copolymer for the first time. The results showed that photoinduced Cu(II)-mediated RDRP is an efficient approach to modify PVDF membranes. To the best of our knowledge there have been no reports on modifying PVDF membranes using this approach. The morphology of the prepared membranes was investigated using a scanning electron microscope (SEM). The performance of the PVDF-g-THFMA copolymer membranes was evaluated on the basis of their pure water flux, molecular weight cut off (MWCO), rejection of bovine serum albumin (BSA), and protein filtration experiments.
$$en!!
- همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
- ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
- در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.
مهسا فایل |
سایت دانلود فایل 